

Certified Pre-Owned
Abusing Active Directory Certificate Services

Will Schroeder
Lee Christensen

Version 1.0.1

Revision Summary

Date Version Description

2021-06-22 1.0.1 Updated EKU details for ESC1 and ESC2.

2021-06-17 1.0.0 Initial release.

TABLE OF CONTENTS

ABSTRACT .. 1

INTRODUCTION ... 2

PRIOR WORK ... 8

BACKGROUND ... 12

CERTIFICATE TEMPLATES ... 16
CERTIFICATE ENROLLMENT... 19
SUBJECT ALTERNATIVE NAMES AND AUTHENTICATION .. 29
AD CS ENUMERATION .. 34

AD CS TRADECRAFT ... 38

CERTIFICATE THEFT .. 38
ACCOUNT PERSISTENCE ... 49
DOMAIN ESCALATION ... 54
DOMAIN PERSISTENCE .. 82

PKI ARCHITECTURE FLAWS ... 92

LACK OF OFFLINE ROOT CA AND TIERED ARCHITECTURE .. 92
UNPROTECTED SUBORDINATE CAS .. 93
BREAKING FOREST TRUSTS VIA AD CS ... 94

DEFENSIVE GUIDANCE ... 97

PREVENTIVE GUIDANCE ... 97
DETECTIVE GUIDANCE ... 115
INCIDENT RESPONSE GUIDANCE .. 136
DEFENSIVE GAPS AND CHALLENGES ... 137

CONCLUSION ... 138

ACKNOWLEDGEMENTS .. 140

1

Abstract
Microsoft’s Active Directory Public Key Infrastructure (PKI) implementation, known as Active
Directory Certificate Services (AD CS), has largely flown under the radar of both the offensive and
defensive communities. AD CS is widely deployed, and provides attackers opportunities for
credential theft, machine persistence, domain escalation, and subtle domain persistence. We
present relevant background on certificates in Active Directory, detail the abuse of AD CS through
certificate theft and active malicious enrollments for user and machine persistence, discuss a set
of common misconfigurations that can result in domain escalation, and explain a method for
stealing a Certificate Authority’s private key in order to forge new user/machine “golden”
certificates. By bringing light to the security implications of AD CS, we hope to raise awareness
for both attackers and defenders alike of the security issues surrounding this complex, widely
deployed, and often misunderstood system.

2

Introduction
Active Directory security has had a huge surge in interest over the last several years. While several
aspects of Active Directory have received thorough attention from a security perspective, one
area that has been relatively overlooked is Active Directory Certificate Services (AD CS). AD CS is
Microsoft’s PKI implementation that integrates with existing Active Directory forests, and
provides everything from encrypting file systems, to digital signatures, to user authentication (a
large focus of this paper), and more. While AD CS is not installed by default for Active Directory
environments, from our experience it is widely deployed.

Our research began when with a single sentence in the Active Directory Technical Specification1
(emphasis ours):

In the case of DCs, the external authentication information that is used to validate the
identity of the client making the bind request comes from the client certificate presented
by the client during the SSL/TLS handshake that occurs in response to the client sending
an LDAP_SERVER_START_TLS_OID extended operation.

This resulted in the question, “How does one use certificates to authenticate to LDAP?” which led
us to learning about AD CS and how to perform certificate-based authentication. Further
investigation led us down the rabbit hole of attempting to gain a holistic understanding of AD CS’
components and their security implications.

This paper aims to be as comprehensive of a reference as possible on the possible attacks against
AD CS, as well as defensive guidance on how to prevent and detect these types of abuses. We
begin with the background needed to understand how AD CS works, including its integration with
Active Directory authentication, and then move into various attacks and associated defenses.
Specifically, we highlight certificate theft and malicious certificate enrollments for user and
machine persistence, a set of common certificate template misconfigurations that result in
domain escalation, and a method for stealing a Certificate Authority’s (CA) private key (if it is not
hardware protected) in order to forge certificates.

This paper briefly reviews AD CS, including its components and how the certificate enrollment
process works. We discuss the storage of issued certificates and their associated private keys,
including common file formats and how the Windows stores them. This includes information

1 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/126300e8-5ff9-4643-9ac6-97e3f4aa1926

3

about using Windows’s Data Protection API (DPAPI) in conjunction with the Mimikatz2 and
SharpDPAPI3 toolsets to extract certificates and their private keys.

We discuss how attackers can leverage certain user and machine certificates to authenticate to
Active Directory using multiple protocols, constituting a form of credential theft that the
offensive industry has largely been unaware of until now. Furthermore, we examine how
combining the theft of machine certificates in conjunction with Kerberos resource-based
constrained delegation (RBCD)4 can be used for reliable long term machine persistence.

Beyond the theft of existing certificates, we examine how attackers can request or renew
certificates for users and computers, providing the same persistence approaches as mentioned
above. While issuing requests has always been possible using GUI-based mmc.exe snap-ins and
certreq.exe, a weaponized method that satisfied requirements while operating over a command
and control (C2) channel has not existed. As a result, we built the Certify toolset to fill this gap,
which we will be releasing approximately 45 days after this paper is released. Certify provides a
wide range of audit and AD CS functionality that we discuss throughout this paper, including the
ability to request new certificates for the currently authenticated user or computer.

We will then examine a set of common misconfigurations that we have seen in many
environments. Since beginning this research, we have analyzed many networks for these AD CS
misconfigurations. In nearly every network so far, AD privilege escalation was possible using one
of these attacks, and low-privileged users (e.g., members of the “Domain Users” group) almost
always had the ability to immediately compromise the Active Directory forest. We also discuss a
variant that results from an enrollment CA misconfiguration, as well as a NTLM relay scenario to
AD CS web enrollment endpoints.

We then move on to exploring is this statement from Microsoft’s documentation5:

If the CA private key were compromised, the attacker could perform operations as the CA.

While this attack has been talked about from a theoretical perspective, we have not found
definitive documentation on weaponization. We will show how to use both the SharpDPAPI and
Mimikatz toolsets to extract a CA’s private key if not hardware protected, and then use that key
to forge certificates for any principal in the domain. Attackers can use these forged certificates
to authenticate as any active user/computer in the domain, and these certificates cannot be
revoked as long as the CA’s certificate is still valid and trusted. We will discuss forging new

2 https://github.com/gentilkiwi/mimikatz/

3 https://github.com/GhostPack/SharpDPAPI

4 https://shenaniganslabs.io/2019/01/28/Wagging-the-Dog.html

5 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn786426(v=ws.11)#protect-ca-private-keys

https://github.com/gentilkiwi/mimikatz/
https://github.com/GhostPack/SharpDPAPI
https://shenaniganslabs.io/2019/01/28/Wagging-the-Dog.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn786426(v=ws.11)#protect-ca-private-keys

4

certificates using a tool we built called ForgeCert6, which we will be releasing with Certify on the
previously mentioned 45-day delayed schedule.

Finally, we discuss how some organizations do not follow Microsoft’s guidance when it comes to
architecting AD CS. Consequently, this results in much less secure and compromise-resilient AD
CS infrastructure. We will also discuss how even when following Microsoft’s guidance, attackers
can possibly abuse shared PKI systems to break the AD forest trust boundary.

Much of the information in this paper exists sparsely scattered throughout the Internet, albeit
often in somewhat theoretical forms. However, given the proliferation of AD CS, its core
integration with Active Directory forests, and the access longevity it could provide to an attacker,
it would be unwise to assume that AD CS has not been a target for advanced adversaries for
years.

Due to the severity of the misconfigurations, our belief that these issues are likely widespread
(backed by data from several networks we have analyzed), and the engineering effort involved
in fixing them, we are refraining from releasing our weaponized toolsets until approximately 45
days after this whitepaper is published. Before then, we are releasing a PowerShell tool titled
PSPKIAudit7 that utilizes PKISolutions’ PSPKI PowerShell module8 to enumerate any
misconfigured templates. If any are found, we recommend following steps in the “Defensive
Guidance” section.

Due to the number of AD CS abuse techniques identified during our research, we decided to
break each attack technique with an identifier so they can be easily correlated with associated
defensive guidance at the end of this paper. These offensive technique IDs are used in the title
of each section describing a technique, as well as in relevant defensive sections so controls can
easily be mapped back to offensive techniques.

Offensive
Technique ID Description

THEFT1 Exporting certificates and their private keys using Window’s Crypto APIs

THEFT2 Extracting user certificates and private keys using DPAPI

6 https://github.com/GhostPack/ForgeCert

7 https://github.com/GhostPack/PSPKIAudit

8 https://github.com/PKISolutions/PSPKI

https://github.com/GhostPack/ForgeCert
https://github.com/GhostPack/PSPKIAudit
https://github.com/PKISolutions/PSPKI

5

THEFT3 Extracting machine certificates and private keys using DPAPI

THEFT4 Theft of existing certificates via file/directory triage

THEFT5 Using the Kerberos PKINIT protocol to retrieve an account’s NTLM hash

PERSIST1 Account persistence via requests for new authentication certificates for a
user

PERSIST2 Account persistence via requests for new authentication certificates for a
computer

PERSIST3 Account persistence via renewal of authentication certificates for a
user/computer

ESC1 Domain escalation via No Issuance Requirements + Enrollable Client
Authentication/Smart Card Logon OID templates +
CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT

ESC2 Domain escalation via No Issuance Requirements + Enrollable Any Purpose
EKU or no EKU

ESC3 Domain escalation via No Issuance Requirements + Certificate Request
Agent EKU + no enrollment agent restrictions

ESC4 Domain escalation via misconfigured certificate template access control

ESC5 Domain escalation via vulnerable PKI AD Object Access Control

ESC6 Domain escalation via the EDITF_ATTRIBUTESUBJECTALTNAME2 setting on
CAs + No Manager Approval + Enrollable Client Authentication/Smart Card
Logon OID templates

6

ESC7 Vulnerable Certificate Authority Access Control

ESC8 NTLM Relay to AD CS HTTP Endpoints

DPERSIST1 Domain persistence via certificate forgery with stolen CA private keys

DPERSIST2 Domain persistence via certificate forgery from maliciously added
root/intermediate/NTAuth CA certificates

DPERSIST3 Domain persistence via malicious misconfigurations that can later cause a
domain escalation

We also numbered the preventative (PREVENTX) and detective (DETECTX) controls for easier
correlation. Appropriate IDs are at the end of each offensive technique section so attacks can
also be easily forward mapped to their associated defensive controls.

Defensive
Technique ID Description

PREVENT1 Treat CAs as Tier 0 Assets

PREVENT2 Harden CA settings

PREVENT3 Audit Published templates

PREVENT4 Harden Certificate Template Settings

PREVENT5 Audit NtAuthCertificates

PREVENT6 Secure Certificate Private Key Storage

PREVENT7 Enforce Strict User Mappings

7

PREVENT8 Harden AD CS HTTP Enrollment Endpoints

DETECT1 Monitor User/Machine Certificate Enrollments

DETECT2 Monitor Certificate Authentication Events

DETECT3 Monitor Certificate Authority Backup Events

DETECT4 Monitor Certificate Template Modifications

DETECT5 Detecting Reading of DPAPI-Encrypted Keys

DETECT6 Use Honey Credentials

DETECT7 Miscellaneous

8

Prior Work
Benjamin Delpy9, as is often the case, was years ahead of us with his work on Mimikatz10 and
Kekeo.11 As such is the case here as well, with him having added functionality to interact with AD
CS back in 201612:

https://twitter.com/gentilkiwi/status/1117124086604488709

His published material13 primarily discusses certificates in the context of smart card14
authentication and encrypted file systems15, but the astute learner can use the concepts he

9 https://twitter.com/gentilkiwi/

10 https://github.com/gentilkiwi/mimikatz

11 https://github.com/gentilkiwi/kekeo/

12 https://twitter.com/gentilkiwi/status/774722617492312064

13 https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/You%20(dis)liked%20mimikatz%20Wait%20for%20kekeo.pdf

14 https://github.com/comaeio/OPCDE/tree/master/2017/From%20mimikatz%20to%20kekeo%2C%20passing%20by%20new%20Microsoft%20security%20technologies%20-%20Benjamin%20Delpy

15 https://github.com/gentilkiwi/mimikatz/wiki/howto-~-decrypt-EFS-files

https://twitter.com/gentilkiwi/status/1117124086604488709
https://twitter.com/gentilkiwi/
https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/kekeo/
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/You%20(dis)liked%20mimikatz%20Wait%20for%20kekeo.pdf
https://github.com/comaeio/OPCDE/tree/master/2017/From%20mimikatz%20to%20kekeo%2C%20passing%20by%20new%20Microsoft%20security%20technologies%20-%20Benjamin%20Delpy
https://github.com/gentilkiwi/mimikatz/wiki/howto-%7E-decrypt-EFS-files

9

discusses to abuse all other forms of certificate tradecraft using Mimikatz and Kekeo. We will
cover various aspects of Mimikatz and Kekeo functionality throughout this paper.

PKI Solutions has several excellent blog posts concerning PKI in AD16 that we studied as we were
learning about AD CS. They also have a great PowerShell module, PSPKI17, for querying and
interacting with AD CS components. PKI solutions also recommended Brian Komar’s book
“Windows Server 2008 - PKI and Certificate Security18” which, while old, proved to still be a
fantastic resource for understanding AD CS and PKI.

We also relied heavily on the following open technical specifications provided by Microsoft for
background information and for details about AD CS:

● [MS-CERSOD]: Certificate Services Protocols Overview19
● [MS-CRTD]: Certificate Templates Structure20
● [MS-CSRA]: Certificate Services Remote Administration Protocol21
● [MS-ICPR]: ICertPassage Remote Protocol22
● [MS-WCCE]: Windows Client Certificate Enrollment Protocol23

Christoph Falta’s GitHub repo24 covers some details on attacking certificate templates, including
virtual smart cards as well as some ideas on ACL based abuses:

If an attacker gains access (Write/Enroll or WriteDACL) to any template, it is possible to
reconfigure that template to issue certificates for Smartcard Logon. The attacker can even
enroll these certificate for any given user, since the setting that defines the CN of the
certificate is controlled in the template.

CQURE release a post titled “The tale of Enhanced Key (mis)Usage25” which covers some Subject
Alternative Name abuses, including the EDITF_ATTRIBUTESUBJECTALTNAME2 configuration
option which we will dive into in this paper. They also detail some of the offensive implications
of host certificate theft (emphasis ours):

16 https://www.pkisolutions.com/thepkiblog/

17 https://github.com/PKISolutions/PSPKI

18 https://www.microsoftpressstore.com/store/windows-server-2008-pki-and-certificate-security-9780735640788

19 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cersod/ec4bb597-9e73-4d2b-a768-621239e21fca

20 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-crtd/4c6950e4-1dc2-4ae3-98c3-b8919bb73822
21 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/40e74714-14bf-4f97-a264-35efbd63a813

22 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-icpr/9b8ed605-6b00-41d1-9a2a-9897e40678fc

23 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/446a0fca-7f27-4436-965d-191635518466

24 https://github.com/cfalta/PoshADCS

25 https://cqureacademy.com/blog/enhanced-key-usage

https://www.pkisolutions.com/thepkiblog/
https://github.com/PKISolutions/PSPKI
https://www.microsoftpressstore.com/store/windows-server-2008-pki-and-certificate-security-9780735640788
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cersod/ec4bb597-9e73-4d2b-a768-621239e21fca
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-crtd/4c6950e4-1dc2-4ae3-98c3-b8919bb73822
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/40e74714-14bf-4f97-a264-35efbd63a813
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-icpr/9b8ed605-6b00-41d1-9a2a-9897e40678fc
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/446a0fca-7f27-4436-965d-191635518466
https://github.com/cfalta/PoshADCS
https://cqureacademy.com/blog/enhanced-key-usage

10

When a user’s workstation is compromised, the attacker can potentially steal certificates
along with their private keys (unless additional protection is in a place like by Trusted
Platform Module (TPM)). Then reimage of the workstation and resetting the user’s
password(s) is not enough because the attacker may still possess a valid user certificate
which allows for network logon using the victim’s identity.

In 2016, Keyfactor released a post titled “Hidden Dangers: Certificate Subject Alternative Names
(SANs)26” also detailing the dangers of EDITF_ATTRIBUTESUBJECTALTNAME2.

@Elkement27 released two posts, “Sizzle @ hackthebox – Unintended: Getting a Logon Smartcard
for the Domain Admin!28” and “Impersonating a Windows Enterprise Admin with a Certificate:
Kerberos PKINIT from Linux29” detailing an unintended solution to a Hack The Box challenge
involving certificate template abuse. The posts detail the misconfiguration that occurs when
there is an overly permissive certificate template with the
CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT flag enabled. We will detail this misconfiguration as
well as malicious template modification later in this paper.

As for how these types of template misconfigurations tend to happen, Carl Sörqvist wrote up a
detailed, and plausible, scenario in 2020 titled “Supply in the Request Shenanigans30”.
Specifically, he covers how sysadmins without proper knowledge of the security implications of
certificate template settings could accidentally configure a template capable of domain
authentication that also allows an alternative subject name specification.

Ceri Coburn released an excellent post in 2020 on “Attacking Smart Card Based Active Directory
Networks31”. In it they detail attacking smart cards (including smartcard pin theft) as well as how
PKINIT works in AD. They also pushed a pull request32 for the Rubeus C# Kerberos abuse toolkit
that implemented PKINIT certificate support. This work was a vital piece to the research in this
paper, as it allows for ticket-granting-ticket (TGT) requests with certificates.

Brad Hill published a whitepaper titled “Weaknesses and Best Practices of Public Key Kerberos
with Smart Cards33” which provided some good background on Kerberos/PKINIT from a security
perspective.

26 https://blog.keyfactor.com/hidden-dangers-certificate-subject-alternative-names-sans
27 https://twitter.com/elkement

28 https://elkement.blog/2019/06/01/sizzle-hackthebox-unintended-getting-a-logon-smartcard-for-the-domain-admin-2/

29 https://elkement.wordpress.com/2020/06/21/impersonating-a-windows-enterprise-admin-with-a-certificate-kerberos-pkinit-from-linux/

30 https://blog.qdsecurity.se/2020/09/04/supply-in-the-request-shenanigans/

31 https://ethicalchaos.dev/2020/10/04/attacking-smart-card-based-active-directory-networks/

32 https://github.com/GhostPack/Rubeus/blob/master/CHANGELOG.md#160---2020-11-06

33 https://research.nccgroup.com/wp-content/uploads/2020/07/weaknesses_and_best_practices_of_public_key_kerberos_with_smart_cards.pdf

https://blog.keyfactor.com/hidden-dangers-certificate-subject-alternative-names-sans
https://twitter.com/elkement
https://elkement.blog/2019/06/01/sizzle-hackthebox-unintended-getting-a-logon-smartcard-for-the-domain-admin-2/
https://elkement.wordpress.com/2020/06/21/impersonating-a-windows-enterprise-admin-with-a-certificate-kerberos-pkinit-from-linux/
https://blog.qdsecurity.se/2020/09/04/supply-in-the-request-shenanigans/
https://ethicalchaos.dev/2020/10/04/attacking-smart-card-based-active-directory-networks/
https://github.com/GhostPack/Rubeus/blob/master/CHANGELOG.md#160---2020-11-06
https://research.nccgroup.com/wp-content/uploads/2020/07/weaknesses_and_best_practices_of_public_key_kerberos_with_smart_cards.pdf

11

Special thanks to Mark Gamache34 for collaborating with us on parts of this work. He
independently discovered many of these abuses, reached out to us, and brought many additional
details to our attention while we were performing this research.

As always, we tried our best to cite the existing work out there that we came across, but we’re
sure we missed things. Much of what we are presenting here draws from and builds heavily on
the above material, with some additional research and weaponization that we will cover.

34 https://twitter.com/markgamacheNerd

https://twitter.com/markgamacheNerd

12

Background
Microsoft defines Active Directory Certificate Services (AD CS) as, “...the server role that allows
you to build a public key infrastructure (PKI) and provide public key cryptography, digital
certificates, and digital signature capabilities for your organization.35” Windows 2000 introduced
this server role, allowing its deployment in one of two configurations: as a standalone
certification authority (CA) or as an enterprise CA that integrates with AD. This paper will cover
the Enterprise CA role as we see it commonly deployed in environments. PKI and AD CS are not
simple systems, and while we are going to dive into some of its specifics, we want to start with
an overview of what certificates are, the high-level components of AD CS, and how clients request
certificates in AD CS environments.

A certificate is an X.509-formatted digitally signed document used for encryption, message
signing, and/or authentication. A certificate typically has various fields, including some of the
following:

● Subject - The owner of the certificate.
● Public Key - Associates the Subject with a private key stored separately.
● NotBefore and NotAfter dates - Define the duration that the certificate is valid.
● Serial Number - An identifier for the certificate assigned by the CA.
● Issuer - Identifies who issued the certificate (commonly a CA).
● SubjectAlternativeName - Defines one or more alternate names that the Subject may go

by.
● Basic Constraints - Identifies if the certificate is a CA or an end entity, and if there are any

constraints when using the certificate.
● Extended Key Usages (EKUs) - Object identifiers (OIDs) that describe how the certificate

will be used. Also known as Enhanced Key Usage in Microsoft parlance. Common EKU
OIDs include:

○ Code Signing (OID 1.3.6.1.5.5.7.3.3) - The certificate is for signing executable code.
○ Encrypting File System (OID 1.3.6.1.4.1.311.10.3.4) - The certificate is for

encrypting file systems.
○ Secure Email (1.3.6.1.5.5.7.3.4) - The certificate is for encrypting email.
○ Client Authentication (OID 1.3.6.1.5.5.7.3.2) - The certificate is for authentication

to another server (e.g., to AD).
○ Smart Card Logon (OID 1.3.6.1.4.1.311.20.2.2) - The certificate is for use in smart

card authentication.

35 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831740(v=ws.11)

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831740(v=ws.11)

13

○ Server Authentication (OID 1.3.6.1.5.5.7.3.1) - The certificate is for identifying
servers (e.g., HTTPS certificates).

● Signature Algorithm - Specifies the algorithm used to sign the certificate.
● Signature - The signature of the certificates body made using the issuer’s (e.g., a CA’s)

private key.

The information included in a certificate binds an identity - the Subject - to the key pair. An
application can then use the key pair in operations as proof of the identity of the user.

CAs are responsible for issuing certificates. Upon its creation, the CA first needs to create its own
private-public key pair and certificate that it will use when issuing certificates. The CA generates
its own root CA certificate by signing a new certificate using its private key (that is, the root CA
certificate is self-signed). AD CS will set the certificate’s Subject and Issuer fields to the CA’s
name, the Basic Constraints to Subject Type=CA, and the NotBefore/NotAfter fields
to five years (by default). Hosts then add the root CA certificate to their trust store to build a trust
relationship with the CA.

AD CS defines CA certificates the AD forest trusts in four locations under the container CN=Public
Key Services,CN=Services,CN=Configuration,DC=<DOMAIN>,DC=<COM>, each differing by their
purpose36:

● The Certification Authorities container defines trusted root CA certificates. These CAs are
at the top of the PKI tree hierarchy and are the basis of trust in AD CS environments. Each
CA is represented as an AD object inside the container where the objectClass is set to
certificationAuthority and the cACertificate property contains the bytes of
the CA’s certificate. Windows propagates these CA certificates to the Trusted Root
Certification Authorities certificate store on each Windows machine. For AD to consider a
certificate as trusted, the certificate’s trust chain must eventually end with one of the root
CA’s defined in this container.

● The Enrollment Services container defines each Enterprise CA (i.e., CAs created in AD CS
with the Enterprise CA role enabled). Each Enterprise CA has an AD object with the
following attributes:

○ An objectClass attribute to pKIEnrollmentService
○ A cACertificate attribute containing the bytes of the CA’s certificate
○ A dNSHostName property sets the DNS host of the CA

36 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831740(v=ws.11)

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831740(v=ws.11)

14

○ A certificateTemplates field defining the enabled certificate templates. Certificate
templates are a “blueprint” of settings that the CA uses when creating a
certificate, and include things such as the EKUs, enrollment permissions, the
certificate’s expiration, issuance requirements, and cryptography settings. We will
discuss certificate templates more in detail later.

In AD environments, clients interact with Enterprise CAs to request a certificate based on
the settings defined in a certificate template. Enterprise CA certificates are propagated to
the Intermediate Certification Authorities certificate store on each Windows machine.

• The NTAuthCertificates AD object defines CA certificates that enable authentication to
AD. This object has an objectClass of certificationAuthority and the object’s
cACertificate property defines an array of trusted CA certificates. AD-joined Windows
machines propagate these CAs to the Intermediate Certification Authorities certificate
store on each machine. Client applications can authenticate to AD using a certificate only
if one the CAs defined by the NTAuthCertificates object has signed the
authenticating client’s certificate.

● The AIA (Authority Information Access) container holds the AD objects of intermediate
and cross CAs. Intermediate CAs are “children” of root CAs in the PKI tree hierarchy; as
such, this container exists to aid in validating certificate chains. Like the Certification
Authorities container, each CA is represented as an AD object in the AIA container where
the objectClass attribute is set to certificationAuthority and the
cACertificate property contains the bytes of the CA’s certificate. These CAs are
propagated to the Intermediate Certification Authorities certificate store on each
Windows machine.

PKI Solutions also has an article describing these containers.37 One can view the status of the
certificates in these containers (and other AD-CS-related containers) by opening the pkiview.msc
MMC snap-in, right clicking on the Enterprise PKI object, and clicking Manage AD Containers
(Figure 1). Additionally, any LDAP browsing tool such as such as the adsiedit.msc or ldp.exe can
view the raw information about these containers (Figure 2).

37 https://www.pkisolutions.com/understanding-active-directory-certificate-services-containers-in-active-directory/

https://www.pkisolutions.com/understanding-active-directory-certificate-services-containers-in-active-directory/

15

Figure 1 - pkiview.msc's view of various AD CS containers

Figure 2 - Viewing AD CS containers in adsiedit.msc

To obtain a certificate from AD CS, clients go through a process called enrollment. At a high level,
during enrollment clients first find an Enterprise CA based on the objects in the Enrollment
Services container discussed above. Clients then generate a public-private key pair and place the
public key in a certificate signing request (CSR) message along with other details such as the
subject of the certificate and the certificate template name. Clients then sign the CSR with their
private key and send the CSR to an Enterprise CA server. The CA server checks if the client can
request certificates. If so, it determines if it will issue a certificate by looking up the certificate
template AD object specified in the CSR. The CA will check if the certificate template AD object’s
permissions allow the authenticating account to obtain a certificate. If so, the CA generates a

16

certificate using the “blueprint” settings defined by the certificate template (e.g., EKUs,
cryptography settings, and issuance requirements) and using the other information supplied in
the CSR if allowed by the certificate’s template settings. The CA signs the certificate using its
private key and then returns it to the client.

Figure 3 - Overview of Certificate Enrollment

We will discuss the services AD CS exposes and the whole certificate enrollment process in more
detail later.

Certificates issued by CAs can provide encryption (e.g., encrypting file system), digital signatures
(e.g., code signing), and authentication (e.g., to AD). This paper will focus primarily on certificates
that enable AD authentication, but keep in mind that attackers can abuse certificates beyond just
authentication.

Certificate Templates

AD CS Enterprise CAs issue certificates with settings defined by certificate templates. These
templates are collections of enrollment policies and predefined certificate settings and contain
things like “How long is this certificate valid for?”, “What is the certificate used for?”, “How is the
subject specified?”, “Who can request a certificate?”, and a myriad of other settings. The
following screenshot shows editing a certificate template via the Certificate Templates Console
MMC snap-in certtmpl.msc:

17

Figure 4 - Example Certificate Template Configuration in the Certificate Templates Console

AD CS stores available certificate templates as AD objects with an objectClass of
pKICertificateTemplate located in the following container:

An AD certificate template object’s attributes define its settings, and its security descriptor
controls what principals can enroll in the certificate or edit the certificate template (more on this
in the following “Enrollment Rights and Protocols” section).

The pKIExtendedKeyUsage38 attribute on an AD certificate template object contains an array
of OIDs enabled in the template. These EKU OIDs affect what the certificate can be used for and
include things like the Encrypting File System (OID 1.3.6.1.4.1.311.10.3.4), Code Signing (OID
1.3.6.1.5.5.7.3.3), Smart Card Logon (OID 1.3.6.1.4.1.311.20.2.2), Client Authentication (OID
1.3.6.1.5.5.7.3.2), and many more. PKI Solutions has a breakdown of the EKU OIDs available from
Microsoft39.

38 https://docs.microsoft.com/en-us/windows/win32/adschema/a-pkiextendedkeyusage

39 https://www.pkisolutions.com/object-identifiers-oid-in-pki/

CN=Certificate Templates,CN=Public Key
Services,CN=Services,CN=Configuration,DC=<DOMAIN>,DC=<COM>

https://docs.microsoft.com/en-us/windows/win32/adschema/a-pkiextendedkeyusage
https://www.pkisolutions.com/object-identifiers-oid-in-pki/

18

Our research focused on EKUs that, when present in a certificate, permit authentication to AD.
We originally thought that only the Client Authentication OID enabled this; however, our
research also found that the following OIDs can enable certificate authentication:

Description OID

Client Authentication 1.3.6.1.5.5.7.3.2

PKINIT Client Authentication* 1.3.6.1.5.2.3.4

Smart Card Logon 1.3.6.1.4.1.311.20.2.2

Any Purpose 2.5.29.37.0

SubCA (no EKUs)

*The 1.3.6.1.5.2.3.4 OID is not present in AD CS deployments by default and needs to be added
manually40, but it does work for client authentication41.

Before Windows Vista, smart cards appeared to have more strict certificate requirements,
including requiring non-empty EKUs42. There is a GPO setting titled “Allow certificates with no
extended key usage certificate attribute43” whose documentation makes it sound like you need
to flip this switch to allow certificate authentication with the All Purpose EKU, Client
Authentication EKU, or no EKU in modern environments. However, this is a client side setting
only. The CQure Academy post on EKUs44 details an older description for this GPO that states
that it affects which smart card-based certificates will show up on a logon screen, which matches
the behavior we’ve seen. So regardless of this GPO value, the scenarios in the table above will
allow such a certificate to authenticate to AD.

Sidenote: For the rest of this paper, when we mention “certificates that allow for
authentication”, we mean one of the five EKU scenarios in the above table.

40 https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/additional-mitigations#deploying-domain-joined-device-certificates

41 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/c83e95a4-ac5e-4519-b885-37a4d1b8d08b#:~:text=id-pkinit-kpclientauth

42 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-vista/cc721959%28v=ws.10%29

43 https://docs.microsoft.com/en-us/windows/security/identity-protection/smart-cards/smart-card-group-policy-and-registry-settings#allow-certificates-with-no-extended-key-usage-certificate-attribute

44 https://cqureacademy.com/blog/enhanced-key-usage

https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/additional-mitigations#deploying-domain-joined-device-certificates
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/c83e95a4-ac5e-4519-b885-37a4d1b8d08b#:%7E:text=id-pkinit-kpclientauth
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-vista/cc721959%28v=ws.10%29
https://docs.microsoft.com/en-us/windows/security/identity-protection/smart-cards/smart-card-group-policy-and-registry-settings#allow-certificates-with-no-extended-key-usage-certificate-attribute
https://cqureacademy.com/blog/enhanced-key-usage

19

An additional EKU OID that we found we could abuse is the Certificate Request Agent OID
(1.3.6.1.4.1.311.20.2.1). Certificates with this OID can be used to request certificates on behalf
of another user unless specific restrictions are put in place. We will dive more into this issue in
the “Enrollment Agents, Authorized Signatures, and Application Policies” and “Misconfigured
Enrollment Agent Templates - ESC3” sections.

Certificate Enrollment

Enrollment Rights and Protocols

Users cannot necessarily obtain a certificate from every defined certificate template. IT
administrators first create certificate templates and then an Enterprise CA “publishes” the
template, making it available to clients to enroll in. Recall, AD CS registers Enterprise CAs in AD
as objects with an objectClass of pKIEnrollmentService. AD CS specifies that a certificate
template is enabled on an Enterprise CA by adding the template’s name to the
certificatetemplates field of the AD object:

Figure 5 - Showing Enabled Certificate Templates with PowerView

AD CS defines enrollment rights - which principals can request a certificate – using two security
descriptors: one on the certificate template AD object and another on the Enterprise CA itself.

For certificate templates, the following ACEs in a template’s DACL can result in a principal having
enrollment rights:

20

• The ACE grants a principal the Certificate-Enrollment extended right. The raw ACE grants
principal the RIGHT_DS_CONTROL_ACCESS45 access right where the ObjectType46 is set
to 0e10c968-78fb-11d2-90d4-00c04f79dc5547. This GUID corresponds with the
Certificate-Enrollment extended right.

• The ACE grants a principal the Certificate-AutoEnrollment extended right. The raw ACE
grants principal the RIGHT_DS_CONTROL_ACCESS48 access right where the ObjectType is
set to a05b8cc2-17bc-4802-a710-e7c15ab866a249. This GUID corresponds with the
Certificate-AutoEnrollment extended right.

• An ACE grants a principal all ExtendedRights. The raw ACE enables the
RIGHT_DS_CONTROL_ACCESS access right where the ObjectType is set to 00000000-
0000-0000-0000-000000000000. This GUID corresponds with all extended rights.

• An ACE grants a principal FullControl/GenericAll. The raw ACE enables the
FullControl/GenericAll access right.

Figure 6 - The default "User" certificate template security descriptor granting Domain Users the Certificate-Enrollment

extended right

IT administrators can configure certificate template permissions using the Certificate Template
MMC snap-in certtmpl.msc by right clicking on a template, select Properties, and viewing the
Security tab:

45 MS-ADTS 5.1.3.2 Access Rights, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/990fb975-ab31-4bc1-8b75-5da132cd4584

46 https://docs.microsoft.com/en-us/windows/win32/secauthz/object-specific-aces
47 MS-CRTD 2.5.2 Determining Autoenrollment Permission of an End Entity for a Template, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-crtd/211ab1e3-bad6-416d-9d56-8480b42617a4

48 MS-ADTS 5.1.3.2 Access Rights, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/990fb975-ab31-4bc1-8b75-5da132cd4584

49 MS-CRTD 2.5.2 Determining Autoenrollment Permission of an End Entity for a Template, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-crtd/211ab1e3-bad6-416d-9d56-8480b42617a4

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/990fb975-ab31-4bc1-8b75-5da132cd4584
https://docs.microsoft.com/en-us/windows/win32/secauthz/object-specific-aces
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-crtd/211ab1e3-bad6-416d-9d56-8480b42617a4
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/990fb975-ab31-4bc1-8b75-5da132cd4584
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-crtd/211ab1e3-bad6-416d-9d56-8480b42617a4

21

Figure 7 - Template Enrollment Permissions via the GUI

An Enterprise CA defines enrollment rights using a security descriptor as well, superseding any
enrollment rights defined by certificate templates. The security descriptor50 configured on the
Enterprise CA defines these rights and is viewable in the Certificate Authority MMC snap-in
certsrv.msc by right clicking on the CA → Properties → Security:

50 MS-CSRA 3.1.1.7 Permissions, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/509360cf-9797-491e-9dd1-795f63cb1538

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/509360cf-9797-491e-9dd1-795f63cb1538

22

Figure 8 - CA that Grants “Authenticated Users” Request Certificates Rights

This ultimately ends up setting the Security registry value in the key
HKLM\SYSTEM\CurrentControlSet\Services\CertSvc\Configuration\<CA NAME>
on the CA server. We have encountered several AD CS servers that grant low-privileged users
remote access to this key via remote registry:

Figure 9 - Remoting Listing an Enterprise CA’s Security Descriptor with reg.exe

Low-privileged users can also enumerate this via DCOM using the ICertAdminD2 COM
interface’s GetCASecurity method51. However, normal Windows clients need to install the
Remote Server Administration Tools (RSAT) to use it since the COM interface and any COM
objects that implement it are not present on Windows by default.

51 MS-CSRA 3.1.4.2.6 ICertAdminD2::GetCASecurity (Opnum 36) https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/453e89fc-cf90-4203-a8ca-b836cd464fc4

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/453e89fc-cf90-4203-a8ca-b836cd464fc4

23

If both the Enterprise CA’s and the certificate template’s security descriptors grant the client
certificate enrollment privileges, the client can then request a certificate. A client can request a
certificate in different ways depending on the AD CS environment’s configuration:

1. Using the Windows Client Certificate Enrollment Protocol52 (MS-WCCE), a set of
Distributed Component Object Model (DCOM) interfaces that interact with various AD CS
features including enrollment. The DCOM server is enabled on all AD CS servers by default
and is the most common method by which we have seen clients request certificates.

2. Via the ICertPassage Remote Protocol53 (MS-ICPR), a remote procedure call (RPC)
protocol can operate over named pipes or TCP/IP.

3. Accessing the certificate enrollment web interface. To use this, the ADCS server needs to
have the Certificate Authority Web Enrollment role installed. Once enabled, a user can
navigate to the IIS-hosted ASP web enrollment application running at
http://<ADCSSERVER>/certsrv/.

4. Interacting with a certificate enrollment service (CES). To use this, a server needs to have
the Certificate Enrollment Web Service role installed. Once enabled, a user can access the
web service at https://<CESSERVER>/<CANAME>_CES_Kerberos/service.svc
to request certificates. This service works in tandem with a certificate enrollment policy
(CEP) service (installed via the Certificate Enrollment Policy Web Service role), which
clients use to list certificate templates at the URL
https://<CEPSERVER>/ADPolicyProvider_CEP_Kerberos/service.svc.
Underneath, the certificate enrollment and policy web services implement MS-WSTEP54
and MS-XCEP55, respectively (two SOAP-based protocols).

5. Using the network device enrollment service. To use this, a server needs to have the
Network Device Enrollment Service56 role installed, which allows clients (namely network
devices) to obtain certificates via the Simple Certificate Enrollment Protocol (SCEP)57.
Once enabled, an administrator can obtain a one-time password (OTP) from the URL
http://<NDESSERVER>/CertSrv/mscep_admin/. The administrator can then
provide the OTP to a network device and the device will use the SCEP to request a
certificate using the URL http://NDESSERVER/CertSrv/mscep/.

On a Windows machine, users can request certificates using a GUI by launching certmgr.msc (for
user certificates) or certlm.msc (for computer certificates), expanding the Personal certificate

52 [MS-WCCE]: Windows Client Certificate Enrollment Protocol, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/446a0fca-7f27-4436-965d-191635518466

53 [MS-ICPR]: ICertPassage Remote Protocol, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-icpr/9b8ed605-6b00-41d1-9a2a-9897e40678fc

54 [MS-WSTEP]: WS-Trust X.509v3 Token Enrollment Extensions, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wstep/4766a85d-0d18-4fa1-a51f-e5cb98b752ea

55 [MS-XCEP]: X.509 Certificate Enrollment Policy Protocol, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-xcep/08ec4475-32c2-457d-8c27-5a176660a210
56 https://social.technet.microsoft.com/wiki/contents/articles/9063.active-directory-certificate-services-ad-cs-network-device-enrollment-service-ndes.aspx

57 https://datatracker.ietf.org/doc/html/draft-nourse-scep-19

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/446a0fca-7f27-4436-965d-191635518466
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-icpr/9b8ed605-6b00-41d1-9a2a-9897e40678fc
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wstep/4766a85d-0d18-4fa1-a51f-e5cb98b752ea
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-xcep/08ec4475-32c2-457d-8c27-5a176660a210
https://social.technet.microsoft.com/wiki/contents/articles/9063.active-directory-certificate-services-ad-cs-network-device-enrollment-service-ndes.aspx

24

store → right clicking Certificates → All Tasks → Request New Certificate. This will present the
user with certificate templates the Enterprise CA has published that they (or their system) can
enroll in:

Figure 10 - User Certificate Request through certmgr.msc

Upon clicking the Enroll button, Windows will request a certificate (by default, using a COM
object that implements MS-WCCE) and the certificate will then appear under Personal
Certificates after a successful enrollment:

Figure 11 - Requested User Certificate Installed in the Personal Certificate Store

25

On the Enterprise CA side, certsrv.msc will show the issued certificate under CA Issued
Certificates:

Figure 12 – Viewing an Issued Certificates in certsrv.msc on an Enterprise CA

One can also use the built-in certreq.exe command or PowerShell’s Get-Certificate
command for certificate enrollment. On non-Windows machines, it is easiest for clients to use
the HTTP-based interfaces to request certificates.

After a CA has issued a certificate, it can revoke the issued certificates through certsrv.msc. AD
CS, by default, distributes revoked certificate information using Certificate Revocation Lists
(CRLs), which are basically just a list of each revoked certificate’s serial number. Administrators
can also optionally configure AD CS to support the Online Certificate Status Protocol (OSCP) by
enabling the Online Responder server role during AD CS installation.

So, what is happening behind the scenes when a user enrolls in a certificate? In a basic scenario,
a client first generates a public key and associated private key. The client creates a Certificate
Signing Request (CSR) in which it specifies the public key and the name of the certificate template.
The client then signs the CSR with the private key and sends the CSR to the Enterprise CA using
one of the enrollment protocols or interfaces (e.g., MS-WCCE, MS-ICPR, the certificate
enrollment web service, etc.).

The Enterprise CA then checks if the client has enrollment privileges at the CA level. If so, the CA
looks at the certificate template specified in the CSR and verifies that the client can enroll in the
given template by examining the certificate template AD object’s DACL. If the DACL grants the
user the enrollment privileges, the user can enroll. The CA will create and sign a certificate based
on the certificate template’s settings and return the signed certificate to the user.

The following is a graphic gives an overview of the enrollment process:

26

Figure 13 - Overview of Certificate Enrollment

Issuance Requirements

Manager Approval

In addition to the certificate template and Enterprise CA access control restrictions, there two
certificate template settings we have seen used to control certificate enrollment. These are
known as issuance requirements:

27

Figure 14 - Certificate issuance Requirements via the Certificate Templates Console

The first restriction is “CA certificate manager approval”, which results in the certificate template
setting the CT_FLAG_PEND_ALL_REQUESTS (0x2) bit on the AD object’s msPKI-Enrollment-
Flag58 attribute. This puts all certificate requests based on the template into the pending state
(visible in the “Pending Requests” section in certsrv.msc), which requires a certificate manager
to approve or deny the request before the certificate is issued:

58 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-crtd/ec71fd43-61c2-407b-83c9-b52272dec8a1

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-crtd/ec71fd43-61c2-407b-83c9-b52272dec8a1

28

Figure 15 - Approving a Pending Certificate Request in certsrv.msc

Enrollment Agents, Authorized Signatures, and Application Policies

The second set of restrictions shown in the issuance requirements screenshot (Figure 14) are the
settings “This number of authorized signatures” and the “Application policy”. The former controls
the number of signatures required in the CSR for the CA to accept it. The latter defines the EKU
OIDs that that the CSR signing certificate must have.

A common use for these settings is for enrollment agents. An enrollment agent is an AD CS term
given to an entity that can request certificates on behalf of another user. To do so, the CA must
issue the enrollment agent account a certificate containing at least the Certificate Request Agent
EKU (OID 1.3.6.1.4.1.311.20.2.1). Once issued, the enrollment agent can then sign CSRs and
request certificates on behalf of other users. The CA will issue the enrollment agent a certificate
as another user only under the following non-comprehensive set of conditions (implemented
primarily in default policy module certpdef.dll):

• The Windows user authenticating to the CA has enrollment rights to the target certificate
template.

• If the certificate template’s schema version is 1, the CA will require signing certificates to
have the Certificate Request Agent OID before issuing the certificate. The template’s
schema version is the specified in its AD object’s msPKI-Template-Schema-Version
property.

• If the certificate template’s schema version is 2:
○ The template must set the “This number of authorized signatures” setting and the

specified number of enrollment agents must sign the CSR (the template’s mspki-
ra-signature AD attribute defines this setting). In other words, this setting
specifies how many enrollment agents must sign a CSR before the CA even
considers issuing a certificate.

29

○ The template’s “Application policy” issuance restriction must be set to “Certificate
Request Agent”.

Enrollment Agent certificates are potentially very powerful. As MS-CRTD section 4.2 states59:

“Because an Enrollment Agent is allowed to specify certificates to be issued to
any subject, it can bypass corporate security policy. As a result, administrators
need to be especially careful when allowing subjects to enroll for Enrollment
Agent certificates.”

Enterprise CAs can place restrictions on enrollment agents at the CA level60, but we have yet to
encounter this in a network. For more information on issuance restrictions, see Microsoft’s PKI
design guidance61.

Subject Alternative Names and Authentication

A Subject Alternative Name (SAN) is an X.509v3 extension. When added to a certificate, it allows
additional identities to be bound to a certificate62 beyond just the subject of the certificate. A
common use for SANs is supplying additional host names for HTTPS certificates. For example, if
a web server hosts content for multiple domains, each applicable domain could be included in
the SAN so that the web server only needs a single HTTPS certificate instead of one for each
domain.

This is all well and good for HTTPS certificates, but when combined with certificates that allow
for domain authentication, a dangerous scenario can arise. By default, during certificate-based
authentication, one way AD maps certificates to user accounts based on a UPN specified in the
SAN63. If an attacker can specify an arbitrary SAN when requesting a certificate that has an EKU
enabling client authentication, and the CA creates and signs a certificate using the attacker-
supplied SAN, the attacker can become any user in the domain. For example, if an attacker can
request a client authentication certificate that has a domain administrator SAN field, and the CA
issues the certificate, the attacker can authenticate as that domain admin.

59 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-crtd/0e7974b3-1550-4b50-808d-2274b0ce11ab

60 https://social.technet.microsoft.com/wiki/contents/articles/10942.ad-cs-security-guidance.aspx#Establish_Restricted_Enrollment_Agents

61 https://social.technet.microsoft.com/wiki/contents/articles/7421.active-directory-certificate-services-ad-cs-public-key-infrastructure-pki-design-guide.aspx#Issuance_requirements

62 https://tools.ietf.org/html/rfc5280#section-4.2.1.6

63 https://docs.microsoft.com/en-us/windows/security/identity-protection/smart-cards/smart-card-certificate-requirements-and-enumeration#client-certificate-mappings

https://social.technet.microsoft.com/wiki/contents/articles/7421.active-directory-certificate-services-ad-cs-public-key-infrastructure-pki-design-guide.aspx#Issuance_requirements
https://tools.ietf.org/html/rfc5280#section-4.2.1.6
https://docs.microsoft.com/en-us/windows/security/identity-protection/smart-cards/smart-card-certificate-requirements-and-enumeration#client-certificate-mappings

30

Various AD CS misconfigurations can allow unprivileged users to supply an arbitrary SAN in a
certificate enrollment, resulting in domain escalation scenarios. We explore these scenarios in
the “Domain Escalation” section.

Kerberos Authentication and the NTAuthCertificates Container

How does certificate authentication to AD work considering that CA servers are typically separate
servers from domain controllers? AD supports certificate authentication over two protocols by
default: Kerberos and Secure Channel (Schannel).

For Kerberos, the technical specification “[MS-PKCA]: Public Key Cryptography for Initial
Authentication (PKINIT) in Kerberos Protocol”64 defines the authentication process.
@_ethicalchaos_ gives a good overview of PKINIT in their smart card post65. A brief overview of
this process is below.

A user will sign the authenticator for a TGT request using the private key of their certificate and
submit this request to a domain controller. The domain controller performs a number of
verification steps and issues a TGT if everything passes. These steps are best detailed by
Microsoft’s smart card documentation66 (emphasis ours):

The KDC validates the user's certificate (time, path, and revocation status) to
ensure that the certificate is from a trusted source. The KDC uses CryptoAPI to
build a certification path from the user's certificate to a root certification
authority (CA) certificate that resides in the root store on the domain controller.
The KDC then uses CryptoAPI to verify the digital signature on the signed
authenticator that was included in the preauthentication data fields. The
domain controller verifies the signature and uses the public key from the user's
certificate to prove that the request originated from the owner of the private
key that corresponds to the public key. The KDC also verifies that the issuer is
trusted and appears in the NTAUTH certificate store.

The “NTAUTH certificate store” mentioned here refers to an AD object AD CS installs at the
following location:

64 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/d0cf1763-3541-4008-a75f-a577fa5e8c5b

65 https://ethicalchaos.dev/2020/10/04/attacking-smart-card-based-active-directory-networks/

66 https://docs.microsoft.com/en-us/windows/security/identity-protection/smart-cards/smart-card-certificate-requirements-and-enumeration#smart-card-sign-in-flow-in-windows

CN=NTAuthCertificates,CN=Public Key
Services,CN=Services,CN=Configuration,DC=<DOMAIN>,DC=<COM>

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/d0cf1763-3541-4008-a75f-a577fa5e8c5b
https://ethicalchaos.dev/2020/10/04/attacking-smart-card-based-active-directory-networks/
https://docs.microsoft.com/en-us/windows/security/identity-protection/smart-cards/smart-card-certificate-requirements-and-enumeration#smart-card-sign-in-flow-in-windows

31

Microsoft explains the significance of this object67:

By publishing the CA certificate to the Enterprise NTAuth store, the
Administrator indicates that the CA is trusted to issue certificates of these types.
Windows CAs automatically publish their CA certificates to this store.

So, what does all this mean? When AD CS creates a new CA (or it renews CA certificates), it
publishes the new certificate to the NTAuthCertificates object by adding the new certificate
to the object’s cacertificate attribute:

Figure 16 - Viewing an NTAuthCertificates Object that Trusts a Single CA Certificate

During certificate authentication, the DC can then verify that the authenticating certificate chains
to a CA certificate defined by the NTAuthCertificates object. CA certificates in the
NTAuthCertificates object must in turn chain to a root CA. The big takeaway here is the
NTAuthCertificates object is the root of trust for certificate authentication in Active Directory!68

Smart cards are a well-known technology that use Kerberos certificate authentication. A smart
card is a physical device that protects the client private key for a certificate at the hardware level.
Virtual smart cards also exist, though they do not have the same security guarantees. RDP
supports authentication with smart cards, but there is one caveat: the certificate template the
user enrolls in needs to have the Smart Card Logon (1.3.6.1.4.1.311.20.2.2) OID set in the

67 https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/import-third-party-ca-to-enterprise-ntauth-store

68 https://twitter.com/gentilkiwi/status/1154685386968506368

https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/import-third-party-ca-to-enterprise-ntauth-store
https://twitter.com/gentilkiwi/status/1154685386968506368

32

pKIExtendedKeyUsage property. As a sidenote, Christoph Falta’s GitHub repo69 has
information on using virtual smart cards, and MySmartLogon has a nice reference on importing
a .pfx manually into a smart card70.

Last year, @_ethicalchaos_ made a PR to Rubeus to implement PKINIT abuse71, and covers more
details on this in depth in their post on attacking smart card based AD networks72. This means
the one could use Rubeus to request a Kerberos ticket granting ticket (TGT) using a certificate
that allows for domain authentication (without needing a physical smart card or the Windows
Credential Store):

Figure 17 - Using Rubeus to Request a TGT with a Certificate

This paper covers how to steal existing certificates and how to further use them with Rubeus
shortly in the “Certificate Theft” section.

Secure Channel (Schannel) Authentication

Schannel is the security support provider (SSP) Windows leverages when establishing TLS/SSL
connections. Schannel supports client authentication (amongst many other capabilities),
enabling a remote server to verify the identity of the connecting user. It accomplishes this using
PKI, with certificates being the primary credential. During the TLS handshake, the server requests

69 https://github.com/cfalta/PoshADCS#virtual-smartcards-to-the-rescue

70 https://www.mysmartlogon.com/knowledge-base/save-pfxp12-file-smart-card/

71 https://github.com/GhostPack/Rubeus/blob/master/CHANGELOG.md#160---2020-11-06

72 https://ethicalchaos.dev/2020/10/04/attacking-smart-card-based-active-directory-networks/

https://github.com/cfalta/PoshADCS#virtual-smartcards-to-the-rescue
https://www.mysmartlogon.com/knowledge-base/save-pfxp12-file-smart-card/
https://github.com/GhostPack/Rubeus/blob/master/CHANGELOG.md#160---2020-11-06
https://ethicalchaos.dev/2020/10/04/attacking-smart-card-based-active-directory-networks/

33

a certificate from the client for authentication. The client, having previously been issued a client
authentication certificate from a CA the server trusts, sends its certificate to the server. The
server then validates the certificate is correct and grants the user access assuming everything is
okay. Comodo has a nice simple overview of this process on their blog73.

When an account authenticates to AD using a certificate, the DC needs to somehow map the
certificate credential to an AD account. Schannel first attempts to map the credential to a user
account use Kerberos’s S4U2Self functionality. If that is unsuccessful, it will follow the attempt to
map the certificate to a user account using the certificate’s SAN extension, a combination of the
subject and issuer fields, or solely from the issuer, as outlined in section 3.5.2 of the Remote
Certificate Mapping Protocol (MS-RCMP) specification74.

By default, not many protocols in AD environments support AD authentication via Schannel out
of the box. WinRM, RDP, and IIS all support client authentication using Schannel, but it requires
additional configuration, and in some cases – like WinRM – does not integrate with Active
Directory. One protocol that does commonly work – assuming AD CS has been setup - is LDAPS
(a.k.a., LDAP over SSL/TLS). In fact, what initiated this research was learning from the AD technical
specification (MS-ADTS) that client certificate authentication to LDAPS is even possible75.

Based our experience, not many tools seem to take advantage of client certificate authentication
to LDAPS. The cmdlet Get-LdapCurrentUser76 demonstrates how one can authenticate to
LDAP using .NET libraries. The cmdlet performs an LDAP “Who am I?” extended operation to
display the currently authenticating user:

73 https://comodosslstore.com/blog/what-is-ssl-tls-client-authentication-how-does-it-work.html

74 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rcmp/d16ed463-f75d-47f5-b19f-e026bcf1bffe

75 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/8e73932f-70cf-46d6-88b1-8d9f86235e81

76 https://github.com/leechristensen/Random/blob/master/PowerShellScripts/Get-LdapCurrentUser.ps1

34

Figure 18 - Authenticating to LDAP as Another User using Schannel

AD CS Enumeration

Just like for most of AD, all the information covered so far is available by querying LDAP as a
domain authenticated, but otherwise unprivileged, user.

If we want to enumerate Enterprise CAs and their settings, one can query LDAP using the
(objectCategory=pKIEnrollmentService) LDAP filter on the
CN=Configuration,DC=<DOMAIN>,DC=<COM> search base (this search base corresponds
with the Configuration naming context of the AD forest). The results will identify the DNS
hostname of the CA server, the CA name itself, the certificate start and end dates, various flags,
published certificate templates, and more.

To better facilitate the enumeration and abuse of the various misconfigurations detailed in this
paper, we built Certify. Certify is a C# tool that can enumerate useful configuration and
infrastructure information about of AD CS environments and can request certificates in a variety
of different ways. We will release Certify approximately 45 days after publishing this paper, and
we will be covering various Certify functionality throughout this paper.

Certify’s cas command can enumerate trusted root CA certificates, certificates defined by the
NTAuthCertificates object, and various information about Enterprise CAs:

35

Figure 19 - Output from Certify's cas command

On a domain-joined machine, one can also enumerate Enterprise CAs using certutil.exe -
TCAInfo:

Figure 20 - Enumerating Certificate Authorities with certutil.exe

36

Certificate templates are AD objects with an object class of pKICertificateTemplate and
store the template’s configuration data. An Enterprise CA “publishes” a template – making it
available for clients to enroll in - by adding the template’s name to the
certificatetemplates attribute of an Enterprise CA’s AD object. Using Certify’s find
command, one can enumerate Enterprise CAs and return detailed information about the
certificate templates each one publishes:

Figure 21 - Enterprise CA Information from Certify’s find Command

Figure 22 - Certificate Template Information from Certify’s find Command

The output of certutil.exe -TCAInfo includes each Enterprise CA’s published certificate
templates. To get detailed information about each available certificate template, one can use
certutil -v -dstemplate :

37

Figure 23 - Enumerating Certificate Templates with certutil

38

AD CS Tradecraft

Certificate Theft

Setting up working Windows PKI infrastructure in an organization of any size is not the simplest
task. If an organization has AD CS installed and configured (and they probably do) they had a
reason to undergo the engineering effort. This means that if an enterprise CA exists, at least some
AD users and/or computers likely have certificates issued to them, and some of these certificates
likely will have an EKU permitting domain authentication.

So where, and how, are these certificates stored? Specifically, since a working Windows .pfx
certificate file is the combination of a public certificate and private key, where and how are both
the certificate and its associated private key certificate stored? One option is for private keys is
to store them on a smart card. In this case, refer to @_ethicalchaos_’s post on attacking
hardware-based smart cards77. If the machine has a Trusted Platform Module (TPM), Windows
could store the private key in the TPM if AD CS has a certificate template supporting it78. The CA
server could also protect its private key using a Hardware Security Module (HSM)79. Attacking
smart cards, TPMs, and HSMs is outside the scope of this paper.

In our experience, though, many organizations do not use any hardware-backed storage methods
and instead use the default settings where the OS stores the keys itself. In this case, Windows
uses the Data Protection Application Programming Interface (DPAPI) to protect the key material.
If you are unfamiliar with DPAPI, we have a post that describes it in depth80. The tools we will
discuss to perform certificate theft are built-in Windows commands, GhostPack’s SharpDPAPI81,
and various Mimikatz modules.

Exporting Certificates Using the Crypto APIs – THEFT1

The easiest way to extract a user or machine certificate and private key is through an interactive
desktop session. If the private key is exportable, one can simply right click the certificate in

certmgr.msc, and go to All Tasks → Export… to export a password protected .pfx file. One can

77 https://ethicalchaos.dev/2020/10/04/attacking-smart-card-based-active-directory-networks/

78 https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/setting-up-tpm-protected-certificates-using-a-microsoft/ba-p/1129055
79 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786417(v=ws.11)

80 https://posts.specterops.io/operational-guidance-for-offensive-user-dpapi-abuse-1fb7fac8b107

81 https://github.com/GhostPack/SharpDPAPI

https://ethicalchaos.dev/2020/10/04/attacking-smart-card-based-active-directory-networks/
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/setting-up-tpm-protected-certificates-using-a-microsoft/ba-p/1129055
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786417(v=ws.11)
https://posts.specterops.io/operational-guidance-for-offensive-user-dpapi-abuse-1fb7fac8b107
https://github.com/GhostPack/SharpDPAPI

39

accomplish this programmatically as well. Examples include PowerShell’s Export-
PfxCertificate cmdlet or TheWover’s CertStealer82 C# project.

Underneath, these methods use the Microsoft CryptoAPI (CAPI) or more modern Cryptography
API: Next Generation (CNG) to interact with the certificate store. These APIs perform various
cryptographic services that needed for certificate storage and authentication (amongst other
uses).

If the private key is non-exportable, CAPI and CNG will not allow extraction of non-exportable
certificates. Mimikatz’s crypto::capi and crypto::cng commands can patch the CAPI and
CNG to allow exportation of private keys. crypto::capi patches CAPI in the current process
whereas crypto::cng requires patching lsass.exe’s memory.

Figure 24 – Patching the CAPI and Exporting a Certificate with Mimikatz

Defensive IDs: NONE

82 https://github.com/TheWover/CertStealer

40

Defensively, there are methods for detecting tampering of LSASS’s memory. We will not cover
these approaches this paper as they are outside the focus of AD CS. In addition, we have not
found great logs for detecting certificate theft when Windows APIs are used to export a
certificate.

User Certificate Theft via DPAPI – THEFT2

Windows stores certificate private keys using DPAPI. Microsoft breaks out the storage locations
for user and machine private keys83. When manually decrypting the encrypted DPAPI blobs, a
developer needs to understand which cryptography API the OS used as the private key file
structure differs between the two APIs. When using SharpDPAPI, it automatically accounts for
these file format differences.

Windows most commonly stores user certificates in the registry in the key
HKEY_CURRENT_USER\SOFTWARE\Microsoft\SystemCertificates84, though some
personal certificates for users are also stored in
%APPDATA%\Microsoft\SystemCertificates\My\Certificates\. The associated user
private key locations are primarily at %APPDATA%\Microsoft\Crypto\RSA\User SID\ for
CAPI keys and %APPDATA%\Microsoft\Crypto\Keys\ for CNG keys. These structures are
semi-undocumented, though Benjamin Delpy has nicely broken down these structures in
Mimikatz85 86. From these structures, one can derive:

● The DPAPI masterkey needed to decrypt the private key protected blob. This defines the
user/machine masterkey (identified by a GUID) needed to decrypt the private key.

● The UniqueName of the private key, also known as the key container name. Windows
stores certificates in some type of raw format (that we were not able to determine) with
metadata prefixed to the actual data of the certificate. Either this UniqueName or the
private key filename is embedded in this metadata and is likely the best way to link private
keys to their associated certificates. As we do not have this method built out, the other
“hackish” way is to compare the decrypted private key components to the public key
components87.

To obtain a certificate and its associated private key, one needs to:

83 https://docs.microsoft.com/en-us/windows/win32/seccng/key-storage-and-retrieval#key-directories-and-files

84 https://docs.microsoft.com/en-us/windows/win32/seccrypto/system-store-locations#cert_system_store_current_user
85 https://github.com/gentilkiwi/mimikatz/blob/fe4e98405589e96ed6de5e05ce3c872f8108c0a0/modules/kull_m_key.h#L18-L38

86 https://github.com/gentilkiwi/mimikatz/blob/fe4e98405589e96ed6de5e05ce3c872f8108c0a0/modules/kull_m_key.h#L51-L68

87 https://github.com/GhostPack/SharpDPAPI/blob/a81031fe714fab80339187bc2bd8b22c110a08af/SharpDPAPI/lib/Dpapi.cs#L446-L451

https://docs.microsoft.com/en-us/windows/win32/seccng/key-storage-and-retrieval#key-directories-and-files
https://github.com/gentilkiwi/mimikatz/blob/fe4e98405589e96ed6de5e05ce3c872f8108c0a0/modules/kull_m_key.h#L18-L38
https://github.com/gentilkiwi/mimikatz/blob/fe4e98405589e96ed6de5e05ce3c872f8108c0a0/modules/kull_m_key.h#L51-L68
https://github.com/GhostPack/SharpDPAPI/blob/a81031fe714fab80339187bc2bd8b22c110a08af/SharpDPAPI/lib/Dpapi.cs#L446-L451

41

1. Identify which certificate one wants to steal from the user’s certificate store and extract
the key store name.

2. Find the DPAPI masterkey needed to decrypt the associated private key.
3. Obtain the plaintext DPAPI masterkey and use it to decrypt the private key.

Benjamin Delpy has documented this process with EFS certificates88, but the same process
applies to other certificates.

There are multiple methods to get the plaintext DPAPI masterkey. A domain’s DPAPI backup key89
can decrypt any domain user’s masterkey file. Mimikatz’s dpapi::masterkey
/in:”C:\PATH\TO\KEY” /rpc command can retrieve an account’s masterkey if Mimikatz is
run in the target user’s security context. If a user’s password is known, one can decrypt masterkey
file using SharpDPAPI’s masterkeys command or Mimikatz’s dpapi::masterkey
/in:”C:\PATH\TO\KEY” /sid:accountSid /password:PASS command.

To simplify masterkey file and private key file decryption, SharpDPAPI’s certificates
command can be used with the /pvk, /mkfile, /password, or {GUID}:KEY arguments to
decrypt the private keys and associated certificates, outputting a .pem text file:

88 https://github.com/gentilkiwi/mimikatz/wiki/howto-~-decrypt-EFS-files

89 https://github.com/GhostPack/SharpDPAPI#backupkey

https://github.com/gentilkiwi/mimikatz/wiki/howto-%7E-decrypt-EFS-files
https://github.com/GhostPack/SharpDPAPI#backupkey

42

Figure 25 – Exporting a Certificate with SharpDPAPI

Note the call out for “[!] Certificate can be used for client auth!”, indicating the certificate allows
for domain authentication. To convert the .pem to a .pfx, one can use the openssl command
displayed at the end of the SharpDPAPI output:

Defensive IDs:

• Detecting Reading of DPAPI-Encrypted Keys - DETECT5

Machine Certificate Theft via DPAPI – THEFT3

Windows stores machine certificates in the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SystemCertificates90 and stores private
keys in several different places depending on the account91. Although SharpDPAPI will search all

90 https://docs.microsoft.com/en-us/windows/win32/seccrypto/system-store-locations#cert_system_store_local_machine
91 https://docs.microsoft.com/en-us/windows/win32/seccng/key-storage-and-retrieval#key-directories-and-files

openssl pkcs12 -in cert.pem -keyex -CSP "Microsoft Enhanced
Cryptographic Provider v1.0" -export -out cert.pfx

https://docs.microsoft.com/en-us/windows/win32/seccng/key-storage-and-retrieval#key-directories-and-files

43

these locations, the most interesting results tend to come from
%ALLUSERSPROFILE%\Application Data\Microsoft\Crypto\RSA\MachineKeys
(CAPI) and %ALLUSERSPROFILE%\Application Data\Microsoft\Crypto\Keys (CNG).
These private keys are associated with the machine certificate store and Windows encrypts them
with the machine’s DPAPI master keys. One cannot decrypt these keys using the domain’s DPAPI
backup key, but rather must use the DPAPI_SYSTEM LSA secret on the system which is accessible
only by the SYSTEM user. You can do this manually with Mimikatz’ lsadump::secrets
command and then use the extracted key to decrypt machine masterkeys. You can also patch
CAPI/CNG as before and use Mimikatz’ crypto::certificates /export
/systemstore:LOCAL_MACHINE command.

SharpDPAPI’s certificates command with the /machine flag (while elevated) will
automatically elevate to SYSTEM, dump the DPAPI_SYSTEM LSA secret, use this to decrypt and
found machine DPAPI masterkeys, and use the key plaintexts as a lookup table to decrypt any
machine certificate private keys:

Figure 26 – Triaging System Certificates with Seatbelt

Once transformed to a .pfx file, one can use the .pfx for domain authentication as that
computer account if the appropriate EKU scenario is present. We will cover how to abuse these
certificates in the “Machine Persistence via Certificates - PERSIST2” section.

Defensive IDs:

44

• Detecting Reading of DPAPI-Encrypted Keys - DETECT5

Finding Certificate Files – THEFT4

Sometimes certificates and their private keys are just lying around on file systems, and one does
not need to extract them from system stores. For example, we have seen exported certificates
and their private keys in file shares, in administrators’ Downloads folder, in source code
repositories, and on servers’ file systems (amongst many other places).

The most common type of Windows-focused certificate files we have seen are .pfx and .p12
files, with .pkcs12 sometimes showing up but less often. These are PKCS#12 formatted files, a
general-use archive format for storing one or more cryptographic objects in a single file. This is
the format used by Windows when exporting certificates and are usually password protected
since the Windows GUI requires a password to be set.

Another common format is .pem files, which contain base64 encodings of a certificate and its
associated private key. As described in the “User Certificate Theft via DPAPI – THEFT2” section,
openssl can easily convert between these formats.

While the following list is not complete, other potentially interesting certificate-related file
extensions are:

.key Contains just the private key.

.crt/.cer Contains just the certificate.

.csr Certificate signing request file. This does not contain certificates or
keys.

.jks/.keystore/.keys Java Keystore. May contain certs + private keys used by Java
applications.

So, what is the best way to proactively find these certificate files? Any file share mining
approaches will work. For example, you can use the Seatbelt command "dir C:\ 10
\.(pfx|pem|p12)`$ false" to search C:\ folder up to 10 folders deep for .pfx/.pem/.p12
files, or use its FindInterestingFiles command to search users’ folders for these files.

45

If you find a PKCS#12 certificate file and it is password protected, you can extract a hash using
pfx2john.py92 crack it using JohnTheRipper. Hashcat unfortunately does not yet support this
format at the time of this paper93.

Your next questions will probably be, “What can I use this certificate for?” Recall the from the
“Background” section - these EKU OIDs94 detail what a certificate can be used for (code signing,
authentication, etc.) You can easily list EKUs for a certificate with PowerShell:

You can also use certutil.exe to parse the .pfx with the following command:

certutil.exe -dump -v cert.pfx

One situation that one might come across if really lucky – a CA certificate file itself. How would
one know? One way (of many different ways) is by correlating between the parsed .pfx file,
Seatbelt information, and Certify information:

92 https://fossies.org/dox/john-1.9.0-jumbo-1/pfx2john_8py_source.html

93 https://github.com/hashcat/hashcat/issues/351#issuecomment-612739264

94 https://www.pkisolutions.com/object-identifiers-oid-in-pki/

$CertPath = “C:\path\to\cert.pfx”

$CertPass = “P@ssw0rd”

$Cert = New-Object
System.Security.Cryptography.X509Certificates.X509Certificate2
@($CertPath, $CertPass)

$Cert.EnhancedKeyUsageList

https://fossies.org/dox/john-1.9.0-jumbo-1/pfx2john_8py_source.html
https://github.com/hashcat/hashcat/issues/351#issuecomment-612739264
https://www.pkisolutions.com/object-identifiers-oid-in-pki/

46

Figure 27 – Correlating Certificates with a CA Thumbprint on the Host and AD

The section “Forging Certificates with Stolen CA Certificates - DPERSIST1” also contains other
techniques to identify a CA certificate.

Defensive IDs:

• Use Honey Credentials – DETECT6

NTLM Credential Theft via PKINIT – THEFT5

There is an additional offensive bonus that comes from certificate/PKINIT abuse – NTLM
credential theft – as summarized in this @gentilkiwi tweet95:

95 https://twitter.com/gentilkiwi/status/826932815518371841

https://twitter.com/gentilkiwi/status/826932815518371841

47

Figure 28 - Tweet Demonstrating Mimikatz Obtaining NTLM Credentials via PKINIT

How is this happening? In MS-PKCA (Microsoft’s Kerberos PKINIT technical specification) section
“1.4 Relationship to Other Protocols” states96:

“In order to support NTLM authentication [MS-NLMP] for applications
connecting to network services that do not support Kerberos authentication,
when PKCA is used, the KDC returns the user’s NTLM one-way function (OWF)
in the privilege attribute certificate (PAC) PAC_CREDENTIAL_INFO buffer”

So, if account authenticates and gets a TGT through PKINIT, there is a built-in “failsafe” that allows
the current host to obtain our NTLM hash from the TGT to support legacy authentication. This

96 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/4e5fb325-eabc-4fac-a0da-af2b6b4430cb

48

involves decrypting a PAC_CREDENTIAL_DATA structure that is a Network Data Representation
(NDR) serialized representation of the NTLM plaintext. NDR is notoriously a giant pain to deal
with outside of C/C++, but luckily for us Benjamin Delpy has already implemented this in Kekeo,
with the tgt::pac function:

Figure 29 – PKINIT to NTLM with Kekeo

Figure 30 – PKINIT to NTLM with Kekeo

49

Kekeo’s implementation will also work with smartcard-protected certs that are currently plugged
in if you can recover the pin97. Other parties are currently integrating this functionality into
Rubeus.

Putting this together with stealing an AD CA’s root certificate, we can forge a certificate for any
active user or computer and use this to get their current NTLM plaintext.

Defensive IDs:

• Monitor Certificate Authentication Events - DETECT2
○ Monitor for Kerberos authentication via PKINIT, since the NTLM hash is only

returned when PKINIT is used

Account Persistence

Active User Credential Theft via Certificates – PERSIST1

If an enterprise CA exists, a user can request a cert for any template available to them for
enrollment. The goal, in the context of user credential theft, is to request a certificate for a
template that allows authentication to AD as that user. That is, a template that has the following
properties:

• Published for enrollment.
• Domain Users (or another group the victim user is a member of) are allowed to enroll.
• Has any of the following EKUs which enable (at a minimum) domain authentication:

○ Smart Card Logon (1.3.6.1.4.1.311.20.2.2)
○ Client Authentication (1.3.6.1.5.5.7.3.2)
○ PKINIT Client Authentication (1.3.6.1.5.2.3.4)
○ Any Purpose EKU (2.5.29.37.0)
○ No EKU set. i.e., this is a (subordinate) CA certificate.

• Does not require manager approval or “authorized signatures” issuance requirements.

Luckily, there is a stock published template that allows just this, the User template. However,
while this template is default for AD CS, some environments may disable it. How can one go about
finding certificate templates available for enrollment?

97 https://github.com/CCob/PinSwipe

https://github.com/CCob/PinSwipe

50

Certify covers this situation again - the Certify.exe find /clientauth command will query
LDAP for available templates that match the above criteria:

Figure 31 - Enumerating Certificate Templates with Certify

As seen above, the User template is present and matches the criteria. The default User template
issues certificates that are valid for a year, but we have seen often seen custom templates used
that increase the expiration length. As a reminder, if an attacker maliciously enrolls in this type
of template, the certificate can be used for authentication as that user as long as the certificate
is valid, even if the user changes their password!

Sidenote: For any vulnerable templates found, one thing to pay close attention to are the
“Enrollment Principals''. As mentioned in the “Enrollment Rights and Protocols” section, for
published templates there is a special Certificate-Enrollment extended right that defines the
principals allowed to enroll in the certificate. Certify’s find command will enumerate these
principals, along with ACL information for the template. An attacker just needs control of a
principal that has the right to enroll in the template.

If we have GUI access to a host, we can manually request a certificate through certmgr.msc or
via the command-line with certreq.exe. To enroll the current user context in a new certificate
template using Certify, run Certify.exe request /ca:CA-SERVER\CA-NAME
/template:TEMPLATE-NAME :

51

Figure 32 - Requesting a Certificate Enrollment with Certify

The result will be a certificate + private key .pem formatted block of text. You can transform this
into a .pfx compatible with Rubeus using the previously discussed command openssl pkcs12
-in cert.pem -keyex -CSP "Microsoft Enhanced Cryptographic Provider
v1.0" -export -out cert.pfx

One can then upload the .pfx to a target and use it with Rubeus to request a TGT for the enrolled
user, for as long as the certificate is valid (remember, the default certificate lifetime is one year):

52

Figure 33 - Using Rubeus to Request a User TGT with a Certificate

Since certificates are an independent primary authentication credential, this certificate will still
be usable even if the user resets their password! Combined with the technique outlined in the
“NTLM Credential Theft via PKINIT – THEFT5” section, an attacker can also persistently obtain the
account’s NTLM hash, which the attacker could use to authenticate via pass-the-hash or crack to
obtain the plaintext password. Overall, this is an alternative method of long-term credential
theft that does not touch LSASS and is possible from a non-elevated context!

Defensive IDs:

• Monitor User/Machine Certificate Enrollments - DETECT1
• Monitor Certificate Authentication Events - DETECT2

Machine Persistence via Certificates - PERSIST2

Machine accounts are just slightly special types of user accounts. If a certificate template
matched the requirements from the User template but instead allowed for Domain Computers
as enrollment principals, an attacker could enroll a compromised system’s machine account. The
default Machine template matches all those characteristics:

53

Figure 34 – Certify Showing that Domain Computers Have Access to the Machines Template

If an attacker elevates privileges on compromised system, the attacker can use the SYSTEM
account to enroll in certificate templates that grant enrollment privileges to machine accounts.
Certify accomplishes this with its /machine argument when requesting a certificate, causing it
to auto-elevate to SYSTEM and then enroll in a certificate template:

Figure 35 - Using Certify to Request a Certificate, Authenticating as the Machine Account

54

With access to a machine account certificate, the attacker can then authenticate to Kerberos as
the machine account. Using S4U2Self, an attacker can then obtain a Kerberos service ticket to
any service on the host (e.g., CIFS, HTTP, RPCSS, etc.) as any user. Elad Shamir’s excellent post98
about Kerberos delegation attacks detailed this attack scenario.

Ultimately, this gives an attack a machine persistence method that lasts as long as the certificate
is valid (for the default Machine template, that means one year). This persistence mechanism
continues working even after the system changes its password (default of every 30 days), will
survive a system wipe (assuming the same machine account name is used after the wipe), and
does not require changing anything on the host OS itself!

Defensive IDs:

• Monitor User/Machine Certificate Enrollments - DETECT1
• Monitor Certificate Authentication Events - DETECT2

Account Persistence via Certificate Renewal - PERSIST3

Certificate templates have a “Validity Period” which determines how long an issued certificate
can be used, as well as a “Renewal period” (usually 6 weeks). This is a window of time before the
certificate expires where an account can renew it from the issuing certificate authority. While
this happens automatically for auto-enrolled certificates99, normal accounts can do this manually
as well.

If an attacker compromises a certificate capable of domain authentication through theft or
malicious enrollment, the attacker can authenticate to AD for the duration of the certificate’s
validity period. The attacker, however, can renew the certificate before expiration. This can
function as an extended persistence approach that prevents additional ticket enrollments from
being requested, which can leave artifacts on the CA server itself.

Defensive IDs: NONE

Domain Escalation

By this point you probably realize that certificates and PKI, especially in AD, are not simple. This
is an area that not that many people (including us, until recently) have sought to understand from

98 https://shenaniganslabs.io/2019/01/28/Wagging-the-Dog.html

99 https://blog.keyfactor.com/certificate-auto-enrollment-issuance

https://shenaniganslabs.io/2019/01/28/Wagging-the-Dog.html
https://blog.keyfactor.com/certificate-auto-enrollment-issuance

55

a security perspective. While there is not anything inherently insecure about AD CS, like with any
system that hasn’t had a huge amount of scrutiny, it’s easy for organizations to misconfigure it in
a way that seriously affects the security of their environment.

Misconfigured Certificate Templates - ESC1

There is a specific set of settings for certificate templates that makes them extremely vulnerable.
As in regular-domain-user-to-domain-admin vulnerable. The first scenario (ESC1) that results in
this vulnerable configuration is as follows:

• The Enterprise CA grants low-privileged users enrollment rights. The Enterprise CA’s
configuration must permit low-privileged users the ability to request certificates. See the
“Enrollment Rights and Protocols” section at the beginning of this paper for more details.

• Manager approval is disabled. This setting necessitates that a user with CA “manager”
permissions review and approve the requested certificate before the certificate is issued.
See the “Manager Approval” section at the beginning of this paper for more details.

• No authorized signatures are required. This setting requires any CSR to be signed by an
existing authorized certificate. See the “Enrollment Agents, Authorized Signatures, and
Application Policies” section at the beginning of this paper for more details.

• An overly permissive certificate template security descriptor grants certificate
enrollment rights to low-privileged users. Having certificate enrollment rights allows a
low-privileged attacker to request and obtain a certificate based on the template.
Enrollment Rights are granted via the certificate template AD object’s security descriptor.
In the discretionary access control list (DACL), the following access control entry (ACE)
configurations permit enrollment:

In the Certificate Templates Console MMC snap-in, permissions are set under the template’s
properties → Security:

56

Figure 36 - Setting a Certificate Template Security Settings

• The certificate template defines EKUs that enable authentication. Applicable EKUs
include Client Authentication (OID 1.3.6.1.5.5.7.3.2), PKINIT Client Authentication
(1.3.6.1.5.2.3.4), Smart Card Logon (OID 1.3.6.1.4.1.311.20.2.2), Any Purpose (OID
2.5.29.37.0), or no EKU (SubCA). The certificate template’s AD object specifies the EKUs

in its pKIExtendedKeyUsage property, which is an array of strings specifying the OIDs of

the enabled EKUs. In the Certificate Templates Console MMC snap-in, EKUs are set under
the template’s properties → Extensions → Application Policies:

57

Figure 37 – Setting EKUs under Application Policies

• The certificate template allows requesters to specify a subjectAltName in the CSR. Recall
that during AD authentication, AD will use the identity specified by a certificate’s
subjectAltName (SAN) field if it is present. Consequently, if a requester can specify the
SAN in a CSR, the requester can request a certificate as anyone (e.g., a domain admin
user). The certificate template’s AD object specifies if the requester can specify the SAN
in its mspki-certificate-name-flag property. The mspki-certificate-name-flag property is a
bitmask and if the CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT flag is present, a
requester can specify the SAN. In the Certificate Templates Console MMC snap-in, this
value is set under a template’s properties → Subject Name → Supply in request:

Figure 38 - Supply in Request Configuration

These settings allow a low-privileged user to request a certificate with an arbitrary SAN, allowing
the low-privileged user to authenticate as any principal in the domain via Kerberos or SChannel.

58

The ability to specify a SAN is the crux of this misconfiguration. This is often enabled, for example,
to allow products or deployment services to generate HTTPS certificates or host certificates on
the fly. It is also enabled simply because IT administrators setting up PKI are unaware of its
implications. In the Certificates Templates Console MMC snap-in, if administrators enable the
“Supply in request” option, a warning does appear:

Figure 39 - Supply in Request Setting Warning

However, if an administrator is unfamiliar with PKI, they very likely could click through this
warning as they are battling to get things working. Duplicating a template that already exhibits
the vulnerable settings also does not result in a warning. In addition, we suspect that when IT
administrators create their own certificate templates, they may duplicate the default WebServer
template that comes with AD CS. The WebServer template has the
CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT flag enabled and then if IT administrators add the
“Client Authentication” or “Smart Card Logon” EKUs, the vulnerable scenario occurs without a
warning from the GUI.

This is not too much of a farfetched idea either as one of the first things IT administrators typically
want an AD CS server for is to create HTTPS certificates. Furthermore, many applications use
SSL/TLS mutual authentication, in which case IT administrators may erroneously enable the
Server Authentication and Client Authentication EKUs, resulting in a vulnerable configuration.
Carl Sörqvist also postulated about this scenario in a post titled “Supply in the Request
Shenanigans” 100.

So taken all together, if there is a published certificate template that allows for these settings, an
attacker can request a certificate as anyone in the environment, including a domain administrator
(or domain controller), and use that certificate to get a legitimate TGT for said user!

100 https://blog.qdsecurity.se/2020/09/04/supply-in-the-request-shenanigans/

https://blog.qdsecurity.se/2020/09/04/supply-in-the-request-shenanigans/

59

In other words, this can be a domain user to domain admin escalation vector in many
environments!

In our experience, this happens quite often. Let’s check out an example demonstrating ESC1.
Below is a vulnerable template that we enumerated using Certify.exe find /vulnerable :

Figure 40 - Enumerating Vulnerable Certificate Templates with Certify

Note that the certificate has the CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT flag enabled, has
the Client Authentication EKU, and grants Domain Users enrollment rights. Now we can request
a certificate, from our currently unelevated context, specifying the /altname as a Domain Admin
(localadmin in this case):

60

Figure 41 - Abusing a Vulnerable Certificate Template with Certify

After openssl transformation, this certificate lets us request a TGT as localadmin which we can
then use to access the domain controller:

Figure 42 - Rubeus Building the Request

61

Figure 43 - Authenticating with an Abused Certificate with Rubeus

The following LDAP query when run against the AD Forest’s configuration schema can be used to
enumerate certificate templates that do not require approval/signatures, that have a Client
Authentication or Smart Card Logon EKU, and have the
CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT flag enabled:

Defensive IDs:

• Harden Certificate Template Settings - PREVENT4
• Enforce Strict User Mappings - PREVENT7
• Monitor User/Machine Certificate Enrollments - DETECT1
• Monitor Certificate Authentication Events - DETECT2

(&(objectclass=pkicertificatetemplate)(!(mspki-enrollment-
flag:1.2.840.113556.1.4.804:=2))(|(mspki-ra-signature=0)(!(mspki-ra-
signature=*)))(|(pkiextendedkeyusage=1.3.6.1.4.1.311.20.2.2)(pkiextend
edkeyusage=1.3.6.1.5.5.7.3.2)(pkiextendedkeyusage=1.3.6.1.5.2.3.4)
(pkiextendedkeyusage=2.5.29.37.0)(!(pkiextendedkeyusage=*)))(mspki-
certificate-name-flag:1.2.840.113556.1.4.804:=1))

62

Misconfigured Certificate Templates - ESC2

The second abuse scenario (ESC2) is a variation of the first. This scenario occurs under the
following conditions:

1. The Enterprise CA grants low-privileged users enrollment rights. Details are the same as
in ESC1.

2. Manager approval is disabled. Details are the same as in ESC1.
3. No authorized signatures are required. Details are the same as in ESC1.
4. An overly permissive certificate template security descriptor grants certificate

enrollment rights to low-privileged users. Details are the same as in ESC1.
5. The certificate template defines the Any Purpose EKU or no EKU.

While templates with these EKUs can’t be used to request authentication certificates as other
users without the CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT flag being present (i.e., ESC1), an
attacker can use them to authenticate to AD as the user who requested them and these two EKUs
are certainly dangerous on their own.

We were initially a bit unclear about the capabilities of the Any Purpose and subordinate CA
(SubCA) EKUs, but others reached out and helped us clarify our understanding. An attacker can
use a certificate with the Any Purpose EKU for (surprise!) any purpose — client authentication,
server authentication, code signing, etc. In contrast, an attacker can use a certificate with no
EKUs — a subordinate CA certificate — for any purpose as well but could also use it to sign new
certificates. As such, using a subordinate CA certificate, an attacker could specify arbitrary EKUs
or fields in the new certificates.

However, if the subordinate CA is not trusted by the NTAuthCertificates object (which it won’t be
by default), the attacker cannot create new certificates that will work for domain authentication.
Still, the attacker can create new certificates with any EKU and arbitrary certificate values, of
which there’s plenty the attacker could potentially abuse (e.g., code signing, server
authentication, etc.) and might have large implications for other applications in the network like
SAML, AD FS, or IPSec.

We feel confident in stating that it’s very bad if an attacker can obtain an Any Purpose or
subordinate CA (SubCA) certificate, regardless of whether it’s trusted by NTAuthCertificates or
not. The following LDAP query when run against the AD Forest’s configuration schema can be
used to enumerate templates matching this scenario:

63

Defensive IDs:

• Harden Certificate Template Settings - PREVENT4
• Enforce Strict User Mappings - PREVENT7
• Monitor User/Machine Certificate Enrollments - DETECT1
• Monitor Certificate Authentication Events - DETECT2

Misconfigured Enrollment Agent Templates - ESC3

The third abuse scenario (ESC3) is like ESC1 and ESC2 but abuses a different EKU and requires an
additional step for abuse. Please see the “Enrollment Agents, Authorized Signatures, and
Application Policies” section for the necessary background information for this section.

The Certificate Request Agent EKU (OID 1.3.6.1.4.1.311.20.2.1), known as Enrollment Agent in
Microsoft documentation101, allows a principal to enroll for a certificate on behalf of another
user. “Enroll for someone else, isn’t that a security issue?” some may ask. However, this is a
common scenario as described by Microsoft’s documentation. Imagine a smart card user visiting
an IT administrator in-person for verification, and that administrator then needs to submit a
certificate request in behalf that user.

AD CS accomplishes this through a certificate template with the Certificate Request Agent OID
(1.3.6.1.4.1.311.20.2.1) in its EKUs. The “enrollment agent” enrolls in such a template and uses
the resulting certificate to co-sign a CSR on behalf of the other user. It then sends the co-signed
CSR to the CA, enrolling in a template that permits “enroll on behalf of”, and the CA responds
with a certificate belong to the “other” user.

To abuse this for privilege scalation, a CAs requires at least two templates matching conditions
below.

Condition 1 - A template allows a low-privileged user to enroll in an enrollment agent certificate.

101 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cersod/97f47d4c-2901-41fa-9616-96b94e1b5435

(&(objectclass=pkicertificatetemplate)(!(mspki-enrollment-
flag:1.2.840.113556.1.4.804:=2))(|(mspki-ra-signature=0)(!(mspki-ra-
signature=*)))(|(pkiextendedkeyusage=2.5.29.37.0)(!(pkiextendedkeyusag
e=*))))

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cersod/97f47d4c-2901-41fa-9616-96b94e1b5435

64

1. The Enterprise CA allows low-privileged users enrollment rights. Details are the same as
in ESC1.

2. Manager approval is disabled. Details are the same as in ESC1.
3. No authorized signatures are required. Details are the same as in ESC1.
4. An overly permissive certificate template security descriptor allows certificate

enrollment rights to low-privileged users. Details are the same as in ESC1.
5. The certificate template defines the Certificate Request Agent EKU. The Certificate

Request Agent OID (1.3.6.1.4.1.311.20.2.1) allows for requesting other certificate
templates on behalf of other principals.

Condition 2 - Another template permits a low privileged user to use the enrollment agent
certificate to request a certificate on behalf of another user, and the template defines an EKU
that allows for domain authentication.

1. The Enterprise CA allows low-privileged users enrollment rights. Details are the same as
in ESC1.

2. Manager approval is disabled. Details are the same as in ESC1.
3. The template schema version 1 or is greater than 2 and specifies an Application Policy

Issuance Requirement requiring the Certificate Request Agent EKU.
4. The certificate template defines an EKU that allows for domain authentication.
5. Enrollment agent restrictions are not implemented on the CA.

Here is an example of a vulnerable template matching Condition 1:

Figure 44 - Certificate Request Agent Enabled Template that Anyone can Enroll In

And here is an example matching Condition 2:

65

Figure 45 - A Schema Version 2 Template Anyone can Enroll in with Application Policy Issuance Restrictions

To abuse this, Certify can request an enrollment agent certificate (Condition 1):

Figure 46 - Requesting an Enrollment Agent Certificate with Certify

Certify can then use the enrollment agent certificate to issue a certificate request on behalf of
another to a template that allow for domain authentication (Condition 2):

66

Figure 47 – Using Certify to Request a Certificate on Behalf of Another User with an Enrollment Cert

Rubeus can then use the certificate to authenticate as the “On Behalf Of” user:

Figure 48 - Authenticating with the “on behalf of” Certificate

Enterprise CAs can constrain the users who can obtain an enrollment agent certificate, the
templates enrollment agents can enroll in, and which accounts the enrollment agent can act on
behalf of by opening certsrc.msc snap-in right clicking on the CA clicking Properties
navigating to the “Enrollment Agents” tab:102

102 https://social.technet.microsoft.com/wiki/contents/articles/10942.ad-cs-security-guidance.aspx#Establish_Restricted_Enrollment_Agents

https://social.technet.microsoft.com/wiki/contents/articles/10942.ad-cs-security-guidance.aspx#Establish_Restricted_Enrollment_Agents

67

Figure 49 – CA Settings Restricting Enrollment Agents (who can Enroll on Behalf of Other Users)

However, the default CA setting is “Do not restrict enrollment agents.” Even when administrators
enable “Restrict enrollment agents”, the default setting is extremely permissive, allowing
Everyone access enroll in all templates as anyone. If Enrollment Agent templates are present in
an environment, administrators should constrain them as much as possible using these settings.

Defensive IDs:

• Harden CA Settings - PREVENT2
• Harden Certificate Template Settings - PREVENT4
• Monitor User/Machine Certificate Enrollments - DETECT1
• Monitor Certificate Authentication Events - DETECT2

Vulnerable Certificate Template Access Control - ESC4

Certificate templates are securable objects in AD, meaning they have a security descriptor that
specifies which AD principals have specific permissions over the template.

We say that a template is misconfigured at the access control level if it has Access Control Entries
(ACEs) that allow unintended, or otherwise unprivileged, AD principals to edit sensitive security
settings in the template.

That is, if an attacker can chain access to a point that they can actively push a misconfiguration
to a template that is not otherwise vulnerable (e.g., by enabling the mspki-certificate-name-flag

68

flag for a template that allows for domain authentication) this results in the same domain
compromise scenario as the previous section. This is a scenario explored in Christoph Falta’s
GitHub repo103.

The specific access control rights for template that we should care about from a security
perspective are “Full Control” and “Write” in the certificate template GUI:

Figure 50 - Sensitive Certificate Template DACL Settings

However, the full rights we care about are:

Right Description

Owner Implicit full control of the object, can edit any properties.

FullControl Full control of the object, can edit any properties.

WriteOwner Can modify the owner to an attacker-controlled principal.

WriteDacl Can modify access control to grant an attacker FullControl.

103 https://github.com/cfalta/PoshADCS

69

WriteProperty Can edit any properties.

You can build manual parsing for these access control entries, or you can use PKI Solutions’
PowerShell PKI module104, specifically the Get-CertificateTemplateAcl105 cmdlet.

Certify’s find command enumerates these sensitive access control entries (the BloodHound
team is actively integrating this enumeration as well):

Figure 51 - Using Certify to Enumerate a Certificate Template with Vulnerable Access Control

For more information on AD access control from a security perspective, see the “An ACE Up the
Sleeve” whitepaper106.

Defensive IDs:

• Harden Certificate Template Settings - PREVENT4
• Monitor User/Machine Certificate Enrollments - DETECT1
• Monitor Certificate Authentication Events - DETECT2
• Monitor Certificate Template Modifications - DETECT4

104 https://github.com/PKISolutions/PSPKI

105 https://www.pkisolutions.com/tools/pspki/get-certificatetemplateacl/

106 https://specterops.io/assets/resources/an_ace_up_the_sleeve.pdf

https://github.com/PKISolutions/PSPKI
https://www.pkisolutions.com/tools/pspki/get-certificatetemplateacl/
https://specterops.io/assets/resources/an_ace_up_the_sleeve.pdf

70

Vulnerable PKI Object Access Control - ESC5

The web of interconnected ACL based relationships that can affect the security of AD CS is
extensive. Several objects outside of certificate templates and the certificate authority itself can
have a security impact on the entire AD CS system. These possibilities include (but are not limited
to):

● The CA server’s AD computer object (i.e., compromise through S4U2Self or S4U2Proxy)
● The CA server’s RPC/DCOM server
● Any descendant AD object or container in the container CN=Public Key

Services,CN=Services,CN=Configuration,DC=<COMPANY>,DC=<COM> (e.g.,
the Certificate Templates container, Certification Authorities container, the
NTAuthCertificates object, the Enrollment Services Container, etc.)

If a low-privileged attacker can gain control over any of these, the attack can likely compromise
the PKI system.

Defensive IDs:

• Harden CA Settings - PREVENT2
• Harden Certificate Template Settings - PREVENT4
• Monitor Certificate Template Modifications - DETECT4

EDITF_ATTRIBUTESUBJECTALTNAME2 - ESC6

There is another similar issue, described in the CQure Academy post107, which involves the
EDITF_ATTRIBUTESUBJECTALTNAME2 flag. As Microsoft describes, “If this flag is set on the CA,
any request (including when the subject is built from Active Directory®) can have user defined
values in the subject alternative name.108” This means that an attacker can enroll in ANY template
configured for domain authentication that also allows unprivileged users to enroll (e.g., the
default User template) and obtain a certificate that allows us to authenticate as a domain admin
(or any other active user/machine). As the Keyfactor post describes109, this setting “just makes it
work”, which is why sysadmins likely flip it without fully understanding the security implications.

107 https://cqureacademy.com/blog/enhanced-key-usage

108 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn786426(v=ws.11)#controlling-user-added-subject-alternative-names

109 https://blog.keyfactor.com/hidden-dangers-certificate-subject-alternative-names-sans

https://cqureacademy.com/blog/enhanced-key-usage
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn786426(v=ws.11)#controlling-user-added-subject-alternative-names
https://blog.keyfactor.com/hidden-dangers-certificate-subject-alternative-names-sans

71

Note: the alternative names here are included in a CSR via the -attrib "SAN:<X>" argument
to certreq.exe (i.e., “Name Value Pairs”). This is different than the method for abusing SANs in
ESC1 as it stores account information in a certificate attribute vs a certificate extension. We are
not sure why it was designed this way.

Organizations can check if the setting is enabled using the following certutil.exe command:

certutil -config "CA_HOST\CA_NAME" -getreg "policy\EditFlags"

Underneath, this just uses remote registry, so the following command may work as well:

Both commands often work as domain authenticated, but otherwise unelevated, user context.
In our experience, whether this works is a bit inconsistent (potentially it is because sometimes
environments explicitly disable Remote Registry, but we are unsure).

Figure 52 - Unelevated Enumeration of EDITF_ATTRIBUTESUBJECTALTNAME2

And finally, Certify’s find command will attempt to check this value for every Certificate
Authority it enumerates:

reg.exe query \\<CA_SERVER
>\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CertSvc\Configu
ration\<CA_NAME>\PolicyModules\CertificateAuthority_MicrosoftDefault.P
olicy\ /v EditFlags

72

Figure 53 - Checking the Value of EDITF_ATTRIBUTESUBJECTALTNAME2 with Certify

To abuse this, just use the /altname flag with any template that allows for domain auth. In this
case let us use the stock User template, which normally doesn’t allow us to specify alternative
names, and request a certificate for a DA:

Figure 54 - Abusing EDITF_ATTRIBUTESUBJECTALTNAME2 with Certify

73

As a sidenote, these settings can be set, assuming domain administrative (or equivalent) rights,
from any system:

If you find this setting in your environment, you can remove this flag with:

This setting is bad. Do not use it. If you want to get an idea of how this even gets set in
environments, Google filetype:pdf EDITF_ATTRIBUTESUBJECTALTNAME2

Note: the CQure Academy post110 (in the “Is it right?” section) states that some of these issues
were reported to MSRC on 01/01/2020, and the behavior was determined to be “by design”.

Defensive IDs:

• Harden CA Settings - PREVENT2
• Monitor User/Machine Certificate Enrollments - DETECT1

Vulnerable Certificate Authority Access Control - ESC7

Outside of certificate templates, a certificate authority itself has a set of permissions that secure
various CA actions. These permissions can be access from certsrv.msc, right clicking a CA,
selecting properties, and switching to the Security tab:

110 https://cqureacademy.com/blog/enhanced-key-usage

certutil -config "CA_HOST\CA_NAME" -setreg policy\EditFlags
+EDITF_ATTRIBUTESUBJECTALTNAME2

certutil -config "CA_HOST\CA_NAME" -setreg policy\EditFlags -
EDITF_ATTRIBUTESUBJECTALTNAME2

https://cqureacademy.com/blog/enhanced-key-usage

74

Figure 55 - Certificate Authority Permissions from certsrv.msc

This can also be enumerated via PSPKI’s module with Get-CertificationAuthority |
Get-CertificationAuthorityAcl :

Figure 56 - Enumerating a Certificate Authority’s ACL through PSPKI

75

The two main rights here are the ManageCA right and the ManageCertificates right, which
translate to the “CA administrator” and “Certificate Manager” (sometimes known as a CA officer)
respectively.

These roles/rights are broken out by Microsoft111 and in other literature, but it was difficult to
determine the exact security implication for each of these rights. Specifically, it was difficult to
determine how an attacker might abuse these rights remotely. The technical specification “[MS-
CSRA]: Certificate Services Remote Administration Protocol” section “3.1.1.7 Permissions”112
details which associated DCOM methods the Administrator and Officer rights can perform
remotely against a CA. We have not done a complete assessment of all the available DCOM
methods, but we will highlight a few interesting results below.

For the Administrator CA right, the method ICertAdminD2::SetConfigEntry which is used
to “...used to set the CA's persisted configuration data that is listed in section 3.1.1.10113”. Section
“3.1.1.10 Configuration Data”114 includes Config_CA_Accept_Request_Attributes_SAN,
which is defined in [MS-WCCE] section 3.2.1.1.4115 as “A Boolean value that indicates whether
the CA accepts request attributes that specify the subject alternative name for the certificate
being requested.” Translation? This is the EDITF_ATTRIBUTESUBJECTALTNAME2 flag described
in the previous ESC6 section!

In 2020, PKISolutions released some additions to PSPKI to enable the direct use of various AD CS
(D)COM interfaces, including ICertAdminD2::SetConfigEntry. PKISolutions published a
post about this implementation116, including helpful examples of how to use SetConfigEntry.

So, putting this all together, if we have a principal with ManageCA rights on a certificate authority,
we can use PSPKI to remotely flip the EDITF_ATTRIBUTESUBJECTALTNAME2 bit to allow SAN
specification in any template:

111 https://social.technet.microsoft.com/wiki/contents/articles/10942.ad-cs-security-guidance.aspx#Roles_and_activities

112 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/509360cf-9797-491e-9dd1-795f63cb1538

113 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/a31ea036-eaec-4b35-a50d-c4fe11843a4b

114 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/1b69ebd9-a728-4cd2-ba67-fc5c9f2fc7c8

115 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/b3ac7b46-8ea7-440d-a4c5-656bb1286d56
116 https://www.pkisolutions.com/powershell-pki-pspki-3-7-enhancements-certification-authority-api-part-1/

https://social.technet.microsoft.com/wiki/contents/articles/10942.ad-cs-security-guidance.aspx#Roles_and_activities
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/509360cf-9797-491e-9dd1-795f63cb1538
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/a31ea036-eaec-4b35-a50d-c4fe11843a4b
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/1b69ebd9-a728-4cd2-ba67-fc5c9f2fc7c8
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/b3ac7b46-8ea7-440d-a4c5-656bb1286d56
https://www.pkisolutions.com/powershell-pki-pspki-3-7-enhancements-certification-authority-api-part-1/

76

Figure 57 - Setting EDITF_ATTRIBUTESUBJECTALTNAME2 Remotely with PSPKI

Figure 58 - Confirming EDITF_ATTRIBUTESUBJECTALTNAME2 Modification

This is also possible in a simpler form with PSPKI’s Enable-PolicyModuleFlag117 cmdlet.

Now let us move on to the ManageCertificates rights, known as Officer rights in “[MS-CSRA]
3.1.1.7”. There are various methods concerning key archival (aka “key recovery agents”), which
we do not cover in this paper. The ICertAdminD::ResubmitRequest118 method “...resubmits
a specific pending or denied certificate request to the CA.”, which causes a pending request to be
approved when performed with Officer rights. The ability to remotely approve pending certificate
requests allows an attacker to subvert the "CA certificate manager approval" protection detailed

117 https://www.sysadmins.lv/projects/pspki/enable-policymoduleflag.aspx

118 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/ffba57d3-f471-4d74-ad37-87114182df30

https://www.sysadmins.lv/projects/pspki/enable-policymoduleflag.aspx
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-csra/ffba57d3-f471-4d74-ad37-87114182df30

77

in “Harden Certificate Template Settings - PREVENT4” section. This is what PSPKI’s Approve-
CertificateRequest119 cmdlet uses under the hood:

Figure 59 - Requesting a Certificate that Requires Manager Approval with Certify

Figure 60 - Approving a Pending Request with PSPKI

119 https://github.com/PKISolutions/PSPKI/blob/4d82f078246eec3b4d55bfe588cde228ec7f1c08/PSPKI/Server/Approve-CertificateRequest.ps1#L27

https://github.com/PKISolutions/PSPKI/blob/4d82f078246eec3b4d55bfe588cde228ec7f1c08/PSPKI/Server/Approve-CertificateRequest.ps1#L27

78

Figure 61 - Downloading the Issued Certificate with Certify

Defensive IDs:

• Miscellaneous – DETECT7

NTLM Relay to AD CS HTTP Endpoints – ESC8

As covered in the “Certificate Enrollment” section, AD CS supports several HTTP-based
enrollment methods via additional AD CS server roles that administrators can install. These HTTP-
based certificate enrollment interfaces are all vulnerable NTLM relay attacks. Using NTLM relay,
an attacker on a compromised machine can impersonate any inbound-NTLM-authenticating AD
account. While impersonating the victim account, an attacker could access these web interfaces
and request a client authentication certificate based on the User or Machine certificate
templates.

NTLM relay to the HTTP-based certificate enrollment endpoints is possible because these
endpoints do not have NTLM relay protections enabled:

• The web enrollment interface (an older looking ASP application accessible at
http://<caserver>/certsrv/), by default only supports HTTP, which cannot protect
against NTLM relay attacks. In addition, it explicitly only allows NTLM authentication via
its Authorization HTTP header, so more secure protocols like Kerberos are unusable.

79

• The Certificate Enrollment Service (CES), Certificate Enrollment Policy (CEP) Web Service,
and Network Device Enrollment Service (NDES) support negotiate authentication by
default via their Authorization HTTP header. Negotiate authentication support Kerberos
and NTLM; consequently, an attacker can negotiate down to NTLM authentication during
relay attacks. These web services do at least enable HTTPS by default, but unfortunately
HTTPS by itself does not protect against NTLM relay attacks. Only when HTTPS is coupled
with channel binding can HTTPS services be protected from NTLM relay attacks.
Unfortunately, AD CS does not enable Extended Protection for Authentication on IIS,
which is necessary to enable channel binding.

NTLM relay to AD CS’s web enrollment interfaces provide many advantages to attackers. A
general issue attackers tend to have when performing NTLM relay attacks is that when an
inbound authentication occurs and the attacker relays it, there is only a short window of time to
abuse it. A privileged account may authenticate only once to an attacker’s machine. The
attacker’s tools can try and keep the NTLM session alive as long as possible, but often the session
is only usable for a short duration. In addition, the authentication session is restricted – the
attacker cannot interact with services that enforce NTLM signing.

An attacker can resolve these limitations, however, by relaying to the AD CS web interfaces. The
attacker can use NTLM relay to access the AD CS web interfaces and request a client
authentication certificate as the victim account. The attacker could then authenticate via
Kerberos or Schannel, or obtain the victim account’s NTLM hash using PKINIT (as discussed in the
“NTLM Credential Theft via PKINIT – THEFT5” section). This solidifies the attacker’s access to
victim account for a long time period (i.e., however long the certificate is valid for) and the
attacker is free to authenticate to any service using multiple authentication protocols without
NTLM signing getting in the way.

Another limitation of NTLM relay attacks is that they require a victim account to authenticate to
an attacker-controlled machine. An attacker can patiently wait for this occur as part of the normal
operations on the network, or the attacker can coerce an account to authenticate to a
compromised machine. Authentication coercion is possible by many means. Lee Christensen
highlighted one such technique, “the printer bug”120, that works by coercing machine accounts to
authenticate to an attacker’s host using the MS-RPRN
RpcRemoteFindFirstPrinterChangeNotification(Ex) RPC method (implemented in
the tool SpoolSample121 and later in the tool Dementor122 using Impacket).

120 https://www.slideshare.net/harmj0y/derbycon-the-unintended-risks-of-trusting-active-directory#slide=41
121 https://github.com/leechristensen/SpoolSample/

122 https://github.com/NotMedic/NetNTLMtoSilverTicket/blob/master/dementor.py

80

Note: Newer operating systems have patched the MS-RPRN coerced authentication “feature”.
However, almost every environment we examine still has Server 2016 machines running, which
are still vulnerable to this. There are other ways to coerce accounts to authenticate to an attacker
as well which could assist in local privilege escalation or remote code execution.

Using “the printer bug”, an attacker can use NTLM relay to impersonate a machine account and
request a client authentication certificate as the victim machine account. If the victim machine
account can perform privileged actions such as domain replication (e.g., domain controllers or
Exchange servers), the attacker could use this certificate to compromise the domain. The attacker
could also logon as the victim machine account and use S4U2Self as previously described to
access the victim machine’s host OS, or use PKINIT to get the machine account’s NT hash and
then forge a Kerberos service ticket (a.k.a. the “silver ticket” attack).

In summary, if an environment has AD CS installed, along with a vulnerable web enrollment
endpoint and at least one certificate template published that allows for domain computer
enrollment and client authentication (like the default Machine template), then an attacker can
compromise ANY computer with the spooler service running!

Certify’s cas command can enumerate enabled HTTP AD CS endpoints:

Figure 62 - Certify Enumerating Enabled AD CS HTTP Endpoints

Enterprise CAs also store CES endpoints in their AD object in the msPKI-Enrollment-Servers
property. Certutil.exe and PSPKI can parse and list these endpoints:

81

Figure 63 - Listing CES Endpoints with Certutil

Figure 64 - List CES Endpoints with PSPKI

Defensive IDs:

• Harden AD CS HTTP Endpoints – PREVENT8

82

Domain Persistence

Figure 65 - Obligatory Meme

With the focus on ADFS attacks and SAML forgery that has resurfaced with the Solarwinds
incident, we revisited an old pipe dream we have had for years. When an organization installs AD
CS, by default, AD enables certificate-based authentication. To authenticate using a certificate, a
CA must issue an account a certificate containing an EKU OID that allows domain authentication
(e.g., Client Authentication). When an account uses the certificate to authenticate, AD verifies
that the certificate chains to a root CA and to a CA certificate specified by the NTAuthCertificates
object.

A CA uses its private key to sign issued certificates. If we stole this private key, could we forge our
own certificates and use them (without a smart card) to authenticate to AD as anyone in the
organization?

83

Spoiler: yes. And this has already been possible with Mimikatz/Kekeo for years:

https://twitter.com/gentilkiwi/status/1117124090631008256

I guess we should call these golden certificates?

We’ll cover the general approach and Mimikatz weaponization before covering the updated and
streamlined process with SharpDPAPI/ForgeCert/Rubeus that we developed.

Forging Certificates with Stolen CA Certificates - DPERSIST1

An Enterprise CA has a certificate and associated private key that exist on the CA server itself.
Also remember that in large organizations, Enterprise CAs are often separate servers from
domain controllers, and often (to some peoples’ surprise) not protected as Tier 0 assets. How
can you tell which cert is the CA cert? Well, it will have a few characteristics:

● As mentioned, the certificate exists on the CA server itself, with its private key protected
by machine DPAPI (unless the OS uses a TPM/HSM/other hardware for protection).

● The Issuer and Subject for the cert are both set to the distinguished name of the CA.

https://twitter.com/gentilkiwi/status/1117124090631008256

84

● CA certificates (and only CA certs) have a “CA Version” extension.
● There are no EKUs.

In a test lab, this is what the above looks like with Seatbelt, assuming elevation against the remote
CA server:

Figure 66 - Enumerating CA Certificate with Seatbelt

The built-in supported way to extract this certificate private key is with certsrv.msc on the CA
server:

85

Figure 67 - Stealing CA Certificate Using certsrv.msc’s Backup Functionality

Figure 68 – Specifying the Location of the Backup in certsrv.msc

There are other ways to extract the private key besides through a CA back up. The certificate and
private key are not any different crypto-wise from other machine certificates, so if we get
elevated code execution on the CA server, we can steal them like we did other machine
certs/keys (again, assuming the private key is not hardware protected). One can do this using the

86

Mimikatz syntax mentioned the “User Certificate Theft via DPAPI – THEFT2” section of this paper,
or with SharpDPAPI using the command SharpDPAPI.exe certificates /machine (as
previously shown as well):

Figure 69 - Stealing a CA Certificate and Private Key with SharpDPAPI

And as before, we can then transform this .pem text into a usable .pfx with openssl as we’ve
done previously (openssl pkcs12 -in ca.pem -keyex -CSP "Microsoft Enhanced
Cryptographic Provider v1.0" -export -out ca.pfx).

Sidenote: Enter a secure password here, you don’t want to leave a CA certificate lying
around unprotected.

With a CA .pfx file containing the CA certificate and private key, one method to forge certificates
would be to import it into a separate offline CA and use Mimikatz’ crypto::scauth function
to generate and sign a certificate123. Alternatively, one could generate the certificate manually
to ensure granular control over each field and to remove the need to set up a separate system.
We took the latter approach and implemented this capability in a tool called ForgeCert124, a C#
tool that takes CA root certificate and forges a new certificate for any user we specify. The
resulting .pfx can be used as previously described to authenticate via SChannel or using Rubeus
to get a TGT for the forged user:

123 https://twitter.com/gentilkiwi/status/1117124086604488709

124 https://github.com/GhostPack/ForgeCert

https://twitter.com/gentilkiwi/status/1117124086604488709
https://github.com/GhostPack/ForgeCert

87

Figure 70 - Forging a New User Certificate with a Stolen CA Certificate with Tool ForgeCert

Note: The target user specified when forging the certificate needs to be active/enabled in AD and
able to authenticate since an authentication exchange will still occur as this user. Trying to forge
a certificate for the krbtgt account, for example, will not work.

This forged certificate will be valid until the end date specified (one year for this example) and as
long as the root CA certificate is valid (recall that validity for these starts at five years but is often
extended to 10+ years). This abuse also is not restricted to just regular user accounts - it will work
for machine accounts as well. This means that when combined with S4U2Self, an attacker can
maintain persistence on any domain machine for as long as the CA certificate is valid:

88

Figure 71 - Forging a New Machine Certificate with a Stolen CA Certificate

Another fun (offensive) bonus is that since we are not going through the normal issuance process,
this forged certificate cannot be revoked because the CA is not aware of its existence (so CRLs do
not come into play)!

https://twitter.com/gentilkiwi/status/1154685386968506368

ForgeCert will be released along with Certify, approximately 45 days after this paper is published.

https://twitter.com/gentilkiwi/status/1154685386968506368

89

Defensive IDs:

• Treat CAs as Tier 0 Assets - PREVENT1
• Monitor Certificate Authority Backup Events - DETECT3
• Detecting Reading of DPAPI-Encrypted Keys - DETECT5

Trusting Rogue CA Certificates - DPERSIST2

Recall the NTAuthCertificates object covered in the “Kerberos Authentication and the
NTAuthCertificates Container” section. This object defines one or more CA certificates in its
cacertificate attribute and AD uses it during authentication. As detailed by Microsoft125,
during authentication, the domain controller checks if NTAuthCertificates object contains
an entry for the CA specified in the authenticating certificate’s Issuer field. If it is, authentication
proceeds. If the certificate is not in the NTAuthCertificates object, authentication fails.

An alternative path to forgery is to generate a self-signed CA certificate and add it to the
NTAuthCertificates object. Attackers can do this if they have control over the
NTAuthCertificates AD object (in default configurations only Enterprise Admin group
members and members of the Domain Admins or Administrators in the forest root’s domain have
these permissions). With the elevated access, one can edit the NTAuthCertificates object
from any system with certutil.exe -dspublish -f C:\Temp\CERT.crt NTAuthCA126 ,
or using the PKI Health Tool127. The specified certificate should work with the previously detailed
forgery method with ForgeCert to generate certificates on demand.

During our testing, we also had to add the certificate to the RootCA directory services store with
certutil.exe as well and were then able to get forged certificates working over SChannel.
However, we were unable to get these forged certificates working for PKINIT.

Regardless, it is usually preferable for an attacker to steal the existing CA certificate instead of
installing an additional rogue CA certificate128.

Defensive IDs:

• Treat CAs as Tier 0 Assets - PREVENT1
• Audit NTAuthCertificates - PREVENT5

125 https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/import-third-party-ca-to-enterprise-ntauth-store

126 https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/import-third-party-ca-to-enterprise-ntauth-store#method-2---import-a-certificate-by-using-certutilexe

127 https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/import-third-party-ca-to-enterprise-ntauth-store#method-1---import-a-certificate-by-using-the-pki-health-tool

128 https://twitter.com/gentilkiwi/status/826943014023073792

https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/import-third-party-ca-to-enterprise-ntauth-store
https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/import-third-party-ca-to-enterprise-ntauth-store#method-2---import-a-certificate-by-using-certutilexe
https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/import-third-party-ca-to-enterprise-ntauth-store#method-1---import-a-certificate-by-using-the-pki-health-tool
https://twitter.com/gentilkiwi/status/826943014023073792

90

Malicious Misconfiguration - DPERSIST3

The authors have done previous research on permission-based domain and host persistence,
culminating in the “An ACE Up the Sleeve129” whitepaper and “An ACE in the Hole: Stealthy Host
Persistence via Security Descriptors130” conference talk. In these, we cover AD access control in
depth, and describe how an attacker can make a malicious modification to an AD object or host-
based security descriptor as a subtle domain persistence method.

There is a myriad of opportunities for persistence via security descriptor modifications of AD CS
components. Any scenario described in the “Domain Escalation” section could be maliciously
implemented by an attacker with elevated access, as well as addition of “control rights'' (i.e.,
WriteOwner/WriteDACL/etc.) to sensitive components. This includes:

● CA server’s AD computer object
● The CA server’s RPC/DCOM server
● Any descendant AD object or container in the container CN=Public Key

Services,CN=Services,CN=Configuration,DC=<COMPANY>,DC=<COM> (e.g.,
the Certificate Templates container, Certification Authorities container, the
NTAuthCertificates object, etc.)

● AD groups delegated rights to control AD CS by default or by the current organization
(e.g., the built-in Cert Publishers group and any of its members)

For example, an attacker with elevated permissions in the domain could add the WriteOwner
permission to the default User certificate template, where the attacker is the principal for the
right. To abuse this at a later point, the attacker would first modify the ownership of the User
template to themselves, and then would set mspki-certificate-name-flag to 1 on the
template to enable ENROLLEE_SUPPLIES_SUBJECT (i.e., allowing a user to supply a Subject
Alternative Name in the request). The attacker could then enroll in the template, specifying a
domain administrator name as an alternative name, and use the resulting certificate for
authentication as the DA.

The possibilities for creative access-control-based persistence in AD CS are extensive and are
compounded by the fact that organizations do not currently have an effective way to audit
permissions associated with certificate services. Once the BloodHound project integrates nodes
and edges for AD CS defensive ACL-based auditing should be easier for most organizations.

129 https://specterops.io/assets/resources/an_ace_up_the_sleeve.pdf

130 https://www.slideshare.net/harmj0y/an-ace-in-the-hole-stealthy-host-persistence-via-security-descriptors

https://specterops.io/assets/resources/an_ace_up_the_sleeve.pdf
https://www.slideshare.net/harmj0y/an-ace-in-the-hole-stealthy-host-persistence-via-security-descriptors

91

Defensive IDs:

• Monitor Certificate Template Modifications - DETECT4

92

PKI Architecture Flaws

Lack of Offline Root CA and Tiered Architecture

We admittedly are not enterprise AD/PKI architects - for more complete recommendations we
suggest reading Microsoft’s “Securing PKI: Planning a CA Hierarchy” document, the multi-part
guide from Ned Pyle at Microsoft titled “Designing and Implementing a PKI131, or Brian Komar’s
book “Windows Server® 2008 PKI and Certificate Security132” which has sections dedicated to
designing and implementing proper PKI hierarchies. We will comment on a few key points here.

Throughout this paper, we have shown that an AD CS root Certificate Authority is extremely
sensitive, and organizations should protect it as much as possible. However, many organizations
have single-tiered CA architectures, which introduces inherent risk due to the extreme sensitivity
of a root CA. According to Microsoft’s Securing PKI: Planning a CA Hierarchy133 document:

“This one-tier hierarchy is not recommended for any production scenario
because with this hierarchy, a compromise of this single CA equates to a
compromise of the entire PKI.”

A more complex CA architecture means that subordinate CA certificates can be revoked without
having to revoke and burn down the root CA.

Most recommendations we have found state that a two-tier CA hierarchy, with a root CA and
one or more “issuing” subordinate CAs, is sufficient for most organizations. Clients should not be
receiving certificates directly from root CAs! Most documentation recommends that the root CA
for an organization be kept offline134, where the root CA server is not connected to the company’s
network and is often air gapped from all networks in a controlled area. This minimizes the risk of
attacker’s compromising the private key which, if it occurs, means an organization needs to
revoke every certificate ever issued (basically a rebuilding of the PKI infrastructure). Here is
Microsoft’s example of such an architecture135:

131 https://techcommunity.microsoft.com/t5/ask-the-directory-services-team/designing-and-implementing-a-pki-part-i-design-and-planning/ba-p/396953

132 https://www.oreilly.com/library/view/windows-server-2008/9780735625167/

133 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786436(v=ws.11)
134 https://social.technet.microsoft.com/wiki/contents/articles/2900.offline-root-certification-authority-ca.aspx

135 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786436(v=ws.11)

https://techcommunity.microsoft.com/t5/ask-the-directory-services-team/designing-and-implementing-a-pki-part-i-design-and-planning/ba-p/396953
https://www.oreilly.com/library/view/windows-server-2008/9780735625167/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786436(v=ws.11)
https://social.technet.microsoft.com/wiki/contents/articles/2900.offline-root-certification-authority-ca.aspx
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786436(v=ws.11)

93

Figure 72 - Microsoft’s Example Two-Tier CA Architecture

However, organizations must closely protect subordinate CAs as described in the next section.

Unprotected Subordinate CAs

CAs that are not root CAs are known as subordinate136 CAs. In AD CS, subordinate CAs enroll by
default in a template named SubCA (display name: “Subordinate Certification Authority”). The
defining characteristic of this template is that it has no EKUs, indicating that it is a subordinate
CA. The default validity period of this template is 5 years, the same as a root CA certificate. The
root CA signs the subordinate CA certificate, and then AD CS adds the subordinate CA to the
NTAuthCertificates and configures it as an Enterprise CA for the Forest. Recall that AD uses CA
certificates defined in the NTAuthCertificates AD object’s cacertificate attribute to validate
smart card/Kerberos PKINIT authentication. As such, a subordinate CA can sign certificates that
allow for domain authentication.

Translation? Certificates issued by subordinate CAs - assuming the issued certificate has an EKU
allowing for domain authentication – can authenticate users to AD. Therefore, AD privilege
escalation is possible if a low privileged attacker can enroll in the SubCA template or any other
template that does not define EKUs (as outlined in the Misconfigured Certificate Templates - ESC2
section). Similarly, if the subordinate CA publishes misconfigured certificate templates, AD
compromise is possible using the aforementioned escalation techniques.

Beyond that, an attacker can use subordinate CA private keys to forge working domain
authentication certificates if a CRL is specified in the forged certificate. This is because during
certificate validation, AD CS performs revocation checks against every certificate in the chain
below the root CA.

136 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831574(v=ws.11)#subordinate-cas

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831574(v=ws.11)#subordinate-cas

94

Taken all together, this means that organizations should treat subordinate CAs as Tier 0 assets
just like root CAs. Unfortunately, many third-party vendors - particularly network appliances that
perform HTTPS interception - advocate for a subordinate CA certificate for the border device to
“work properly”. Their documentation actively promotes this: ZScaler137, Palo Alto138, Fortinet139,
SonicWall140, Digital Scepter141, Forcepoint142, and more. This introduces potential leakages of a
subordinate CA certificate and means that these devices now must be considered Tier0 assets as
well.

There is a better way. Organizations can setup CA constraints143, restrictions that constrain the
types of certificates that a subordinate CA can issue. The Microsoft post “HTTPS Inspection and
your PKI” 144 recommends this approach. Microsoft also states:

“A typical subordinate CA can issue an end entity certificate for “ANY” purpose.
Applying Application Policy allows restriction on the Enhanced Key Usage for
certificates issued by a subordinate.”145

Keyfactor also has a great post titled “Restricting SSL Intercept and Proxy Sub CA Certificates” 146
which describes why, and how, to implement this type of restriction, concluding with the
following:

“If you need a Sub CA certificate for an SSL Intercept or Proxy application,
consider resigning the CSR to apply policy, a path length restriction, and an EKU
restriction to prevent the application from generating certificates with usages
beyond what is necessary. “

Breaking Forest Trusts via AD CS

We have done a fair amount of security research on AD domain trusts147, including receiving a
CVE for our work on breaking the forest trust boundary148. AD CS introduces a set of

137 https://help.zscaler.com/zia/signing-csr-using-active-directory-certificate-services

138 https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000ClWOCA0

139 https://docs.fortinet.com/document/fortigate/6.2.0/cookbook/680736/microsoft-ca-deep-packet-inspection#Create

140 https://www.sonicwall.com/support/knowledge-base/how-can-i-create-a-dpi-ssl-certificate-for-the-purpose-of-dpi-ssl-certificate-resigning/170503514073825/

141 https://digitalscepter.com/blog/entry/ssl-decryption-implementation

142 https://support.forcepoint.com/KBArticle?id=How-to-Create-a-Subordinate-Certificate-Authority

143 https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/constraints-what-they-are-and-how-they-amp-8217-re-used/ba-p/1129048

144 https://docs.microsoft.com/en-us/archive/blogs/crypto/https-inspection-and-your-pki-2

145 https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/constraints-what-they-are-and-how-they-amp-8217-re-used/ba-p/1129048
146 https://blog.keyfactor.com/restricting-ssl-intercept-and-proxy-sub-ca-certificates

147 https://medium.com/@harmj0y/a-guide-to-attacking-domain-trusts-ef5f8992bb9d

148 https://posts.specterops.io/not-a-security-boundary-breaking-forest-trusts-cd125829518d

https://help.zscaler.com/zia/signing-csr-using-active-directory-certificate-services
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000ClWOCA0
https://docs.fortinet.com/document/fortigate/6.2.0/cookbook/680736/microsoft-ca-deep-packet-inspection#Create
https://www.sonicwall.com/support/knowledge-base/how-can-i-create-a-dpi-ssl-certificate-for-the-purpose-of-dpi-ssl-certificate-resigning/170503514073825/
https://digitalscepter.com/blog/entry/ssl-decryption-implementation
https://support.forcepoint.com/KBArticle?id=How-to-Create-a-Subordinate-Certificate-Authority
https://docs.microsoft.com/en-us/archive/blogs/crypto/https-inspection-and-your-pki-2
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/constraints-what-they-are-and-how-they-amp-8217-re-used/ba-p/1129048
https://blog.keyfactor.com/restricting-ssl-intercept-and-proxy-sub-ca-certificates
https://medium.com/@harmj0y/a-guide-to-attacking-domain-trusts-ef5f8992bb9d
https://posts.specterops.io/not-a-security-boundary-breaking-forest-trusts-cd125829518d

95

misconfiguration opportunities and architectural designs that can compromise the security
boundary of an AD forest.

CAs Trusts Breaking Forest Trusts

The Microsoft documentation “AD CS: Cross-forest Certificate Enrollment with Windows Server
2008 R2”149 details how to set up a PKI infrastructure that allows “...enterprises to deploy a
central PKI in one Active Directory Domain Services (AD DS) forest that issues certificates to
domain members in other forests.” As professionals who have assessed the security of countless
AD environments over the past several years, this concept causes us a lot of concern.

Microsoft defines AD forests as security boundaries150, meaning that principals external to the
forest should not be able take control away from administrators within the forest. Organizations
using a CA architecture that intentionally bridges this security boundary should do so with a huge
amount of care to prevent cross-forest compromise.

Microsoft’s implementation documentation151 recommends setting up a resource forest with one
centralized AD CS instance that serves additional other account forests, providing these forests
with enrollment services. This is architecturally similar to the Enhanced Security Admin
Environment (ESAE, a.k.a. “red forest”) secured forest architecture, where one secured forest
handles various security administration tasks for other forests, though a two-way forest trust is
recommended here in the AD CS scenario instead of one-way trusts. Of note, EASE has now been
retired152 in preference for cloud-based solutions, but retired recommendations do not mean
these architectures do not still exist.

The setup for cross-forest enrollment is relatively simple. Administrators publish the root CA
certificate from the resource forest to the account forests and add the enterprise CA certificates
from the resource forest to the NTAuthCertificates and AIA containers in each account forest153.
To be clear, this means that the CA in the resource forest has complete control over all other
forests it manages PKI for. If attackers compromise this CA, they can forge certificates for all users
in the resource and account forests, breaking the forest security boundary.

149 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ff955842(v=ws.10)

150 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc759073(v=ws.10)#forests-as-security-boundaries

151 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/ff955845(v=ws.10)
152 https://docs.microsoft.com/en-us/security/compass/esae-retirement#why-change-the-recommendation

153 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/ff955845(v=ws.10)#deploying-ad-cs-for-cross-forest-certificate-enrollment

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ff955842(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc759073(v=ws.10)#forests-as-security-boundaries
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/ff955845(v=ws.10)
https://docs.microsoft.com/en-us/security/compass/esae-retirement#why-change-the-recommendation
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/ff955845(v=ws.10)#deploying-ad-cs-for-cross-forest-certificate-enrollment

96

Foreign Principals With Enrollment Privileges

Another thing organizations need to be careful of in multi-forest environments is Enterprise CAs
publishing certificates templates that grant Authenticated Users or foreign principals
(users/groups external to the forest the Enterprise CA belongs to) enrollment and edit rights.
When an account authenticates across a trust, AD adds the Authenticated Users SID to the
authenticating user’s token154. Therefore, if a domain has an Enterprise CA with a template that
grants Authenticated Users enrollment rights, a user in different forest could potentially enroll in
the template. Similarly, if a template explicitly grants a foreign principal enrollment rights, then
a cross-forest access-control relationship gets created, permitting a principal in one forest to
enroll in a template in another forest. Ultimately both these scenarios increase the attack surface
from one forest to another. Depending on the certificate template settings, an attacker could
abuse this to gain additional privileges in a foreign domain.

154https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/dd560679(v=ws.10)#the-problem-of-authenticating-users-from-a-trusted-forest

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/dd560679(v=ws.10)#the-problem-of-authenticating-users-from-a-trusted-forest

97

Defensive Guidance
We have covered a lot of ground on the offensive side. We are going to do our best to cover
defensive advice we know of, starting with preventative guidance and then moving into detective
measures and incident response recommendations.

At a high level, security and IT infrastructure teams should work together to build prevention,
detection, and response playbooks around AD CS, ideally before setting up AD CS and integrating
it into an AD environment. We have found that there is a general lack of knowledge surrounding
the security implications of AD CS, and many teams would not know how to properly respond to
compromises involving AD CS. We recommend planning and performing active response
exercises for as many of the compromises as possible that have been detailed in this paper and
consider detailed table-top exercises for response actions that would likely disrupt business
operations (like rotating a root CA’s private key).

As previously mentioned, we have broken out each preventative and detective action with IDs
like the attack technique breakouts. At the end of each section describing a defensive action, the
associated attack IDs are listed, just like the defensive IDs being listed at the end of attack
description sections. We have broadly grouped the recommendations into preventative actions
(PREVENT#) and detective actions (DETECT#).

We also highly recommend the book “Windows Server 2008 - PKI and Certificate Security155” for
understanding, architecting, and securing Windows PKI systems.

Preventive Guidance

For general preventative advice from Microsoft, see their “AD CS Security Guidance”156 and the
“Securing PKI: Technical Controls for Securing PKI”157 documents, and the “Windows Server 2008
PKI and Certificate Security158” book for more complete guidance.

Treat CAs as Tier 0 Assets - PREVENT1

Organizations should treat CA servers as a Tier 0 assets, securing it just as they would a domain
controller. While many AD architects would think this is obvious, during our assessment of real

155 https://www.microsoftpressstore.com/store/windows-server-2008-pki-and-certificate-security-9780735640788

156 https://social.technet.microsoft.com/wiki/contents/articles/10942.ad-cs-security-guidance.aspx

157 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786426(v=ws.11)

158 https://www.microsoftpressstore.com/store/windows-server-2008-pki-and-certificate-security-9780735640788

https://www.microsoftpressstore.com/store/windows-server-2008-pki-and-certificate-security-9780735640788
https://social.technet.microsoft.com/wiki/contents/articles/10942.ad-cs-security-guidance.aspx
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786426(v=ws.11)
https://www.microsoftpressstore.com/store/windows-server-2008-pki-and-certificate-security-9780735640788

98

networks, we have noticed that many organizations do not treat CAs with the same sensitivity
and they absolutely should be.

This extends beyond just the root CA. Recall from the Unprotected Subordinate CAs section that
certificates issued by subordinate CAs, assuming the issued template allows for domain
authentication, can be used to authenticate to the KDC in the domain. So, administrators should
protect subordinate CAs as Tier 0 assets, along with any appliance or host possessing a
subordinate CA certificate.

More information on CA architecture is detailed in the “PKI Architecture Flaws” section.

Many of these issues can be identified through either the PSPKIAudit159 PowerShell toolkit, or
Certify160.

Attack IDs:

• Forging Certificates with Stolen CA Certificates - DPERSIST1
• Trusting Rogue CA Certificates - DPERSIST2

Harden CA Settings - PREVENT2

There are various settings that organizations should audit and harden on the Enterprise CAs.
These settings need to be hardened on EVERY CA that is present in an environment for effective
prevention.

Disable EDITF_ATTRIBUTESUBJECTALTNAME2

To determine if the EDITF_ATTRIBUTESUBJECTALTNAME2 flag is present in your environment,
run any of the following:

1. PSPKIAudit: Invoke-PKIAudit
2. Certify: Certify.exe cas
3. Certutil: certutil.exe -config "CA_HOST\CA_NAME" -getreg

"policy\EditFlags"

This may need to be run from an elevated context if the enumeration fails. If this flag is present
on any CA in your environment, we recommend disabling it as soon as possible. This setting being

159 https://github.com/GhostPack/PSPKIAudit

160 https://github.com/GhostPack/Certify

https://github.com/GhostPack/PSPKIAudit
https://github.com/GhostPack/Certify

99

present means that if there is a domain-authentication-capable certificate template where
approvals are not enabled, then any user who can enroll in the template can elevate to domain
admin privileges. Administrators can disable this setting with the following command:

If you must keep this setting enabled in your environment, enable manager approvals for any
certificate template that allows for domain authentication:

Figure 73 - Constraining Certificate Enrollments with Manager Approvals

certutil -config "CA_HOST\CA_NAME" -setreg policy\EditFlags -
EDITF_ATTRIBUTESUBJECTALTNAME2

100

Constrain Enrollment Agents

If the environment uses enrollment agents, restrict enrollment agents through the Certificate
Authority MMC snap-in (certsrv.msc) by right clicking on the CA → Properties → Enrollment
Agents. This allows you to restrict which principals can act as enrollment agents, and for which
users/templates those agents can enroll on behalf of. For example, to only allow members of the
EnrollmentAgents domain group to act as enrollment agents, where those members can only
enroll in the User certificate template on behalf of members of the NewEmployees group, the
configuration would be the following:

Figure 74 - Restricting Enrollment Agents through certsrv.msc

101

Restrict CA Server Permissions

Network defenders should also audit CA servers’ permissions. They can do so by the following
means:

1. PSPKIAudit: Invoke-PKIAudit
2. Certify: Certify.exe cas
3. MMC: Administrators can list them manually via the Certificate Authority MMC snap-in

(certsrv.msc) by right clicking on the CA → Properties → Security. Organizations should

restrict the “Issue and Manage Certificates” and “Manage CA” permissions to appropriate
administrative groups. Attackers can abuse the “Manage CA” right to compromise the
domain and can use the “Issue and Manage Certificates” right to subvert approval
processes (see Vulnerable Certificate Authority Access Control - ESC7 for more
information):

Figure 75 - Auditing CA Permissions through certsrv.msc

102

Optionally, organizations can remove the “Request Certificates” (aka Enroll) permission from
groups such as Domain Users as a preventive measure against some escalation scenarios.
Removing enrollment permissions at the CA level will prevent that user/group from enrolling in
any certificate templates. However, it is generally advised to restrict the enrollment permissions
on the template level.

Attack IDs:

• EDITF_ATTRIBUTESUBJECTALTNAME2 - ESC6
• Vulnerable Certificate Authority Access Control - ESC7

Audit Published Templates - PREVENT3

The “Certificate Enrollment” section mentioned that administrators create templates then
“publish” them to an Enterprise CA. AD CS specifies that a certificate template is enabled on an
Enterprise CA by adding the template’s name to the certificatetemplates attribute of the
Enterprise CA’s AD object. You can enumerate the templates published to a CA through the
Certificate Authority MMC snap-in (certsrv.msc), expanding a CA and clicking on “Certificate
Templates”:

Figure 76 - Enumerating Published Certificate Templates for a CA

The following commands can enumerate templates published by an Enterprise CA:

• Certify:
○ Certify.exe cas - List Enterprise CAs, including published templates:
○ Certify.exe find - Show all published templates:

103

• Certutil: Certutil.exe -TCAInfo [DC=COMPANY,DC=COM]

Administrators should remove unused templates from publication on every CA in the
environment to lower the attack surface and opportunities for accidental misconfiguration.

Attack IDs:

• Misconfigured Certificate Templates - ESC1
• Misconfigured Certificate Templates - ESC2
• Misconfigured Enrollment Agent Templates - ESC3
• Vulnerable Certificate Template Access Control - ESC4
• EDITF_ATTRIBUTESUBJECTALTNAME2 - ESC6
• Vulnerable Certificate Authority Access Control - ESC7

Harden Certificate Template Settings - PREVENT4

As described extensively in the “Domain Escalation” section, there are various combinations of
certificate template settings that can result in domain escalation. To audit these settings, run any
of the following commands and analyze the permissions and configuration of each published
certificate template:

• PSPKIAudit: Invoke-PKIAudit
• Certify:

o Certify.exe find [/hideAdmins] - Display published templates:
o Certify.exe find /vulnerable [/hideAdmins] - Display published

templates that potentially could result in domain escalation
• Certutil:

o certutil.exe -TCAInfo - Display published templates
o certutil.exe -v -dsTemplate - Display template permissions

104

Figure 77 – Sample Invoke-PKIAudit Output

For templates that allow SAN specification via the CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT
flag AND allow for domain authentication, there are a few approaches for mitigation. If the
template does not actually require SAN specification, the first option is to remove the “Supply in
Request” setting under the “Subject Name” settings for any affected template (this will disable
the CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT flag):

105

Figure 78 - Vulnerable “Supply in the request” Subject Name Specification

Another option is to enable certificate approvals on the template:

Figure 79 - Constraining Certificate Enrollments with Manager Approvals

Also, under “Issuance Requirements”, administrators can configure authorized signatures to
enact CSR signing restrictions for the template. There is more information on approvals and
signatures in the Issuance Requirements section.

If an organization needs the “Supply in Request” setting enabled, please read Microsoft’s
guidance on this subject161 and restrict which users/groups have enrollment privileges to the
template as much as possible. Administrators can restrict enrollment privileges by modifying the

161 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786426(v=ws.11)#controlling-user-added-subject-alternative-names

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786426(v=ws.11)#controlling-user-added-subject-alternative-names

106

security descriptor of the template to only allow carefully controlled groups to enroll,
remembering that any principal with “Enroll” rights can obtain certificate as any domain user:

Figure 80 - Constraining Certificate Enrollments Through Security Descriptor Restrictions

When auditing template security descriptors, analyze enrollment permissions and the following
settings that could grant write access to the template:

• The owner of the security descriptor
• FullControl, WriteDacl, WriteOwner, or WriteProperty permissions to the template

With write access to a template, attackers could reconfigure it to a vulnerable state, hence why
defenders should audit those permissions as well.

107

When auditing enrollment permissions, for each published template, analyze the EKUs in
“Enhanced Key Usage” for schema version 1 templates and “Application Policies” for schema
version 2 templates. Ensure that the template specifies the minimum number of EKUs necessary
to function. If a template has “powerful” EKUs - the EKUs are null (i.e., a subordinate CA) or
contain All Purpose, Certificate Request Agent, or other sensitive EKUs - restrict the enrollment
in the certificate to only privileged groups. In addition, review templates with EKUs that enable
domain authentication (see the table below) and ensure they are necessary:

Description OID

Client Authentication 1.3.6.1.5.5.7.3.2

PKINIT Client Authentication 1.3.6.1.5.2.3.4

Smart Card Logon 1.3.6.1.4.1.311.20.2.2

Any Purpose 2.5.29.37.0

SubCA (no EKUs)

108

Figure 81 - A Template with an EKU that Enables Domain Authentication in the Certificate MMC Snap-in

Attack IDs:

• Misconfigured Certificate Templates - ESC1
• Misconfigured Certificate Templates - ESC2
• Misconfigured Enrollment Agent Templates - ESC3
• Vulnerable Certificate Template Access Control - ESC4

Audit NTAuthCertificates - PREVENT5

Recall from the Kerberos Authentication and the NTAuthCertificates Container section that the
NTAuthCertificates AD object defines CA certificates that enable authentication to AD.
Administrators can view these certificates in a variety of ways:

• Certify: Certify.exe cas
• Certutil: certutil -viewstore

"ldap:///CN=NtAuthCertificates,CN=Public Key

109

Services,CN=Services,CN=Configuration,DC=<DOMAIN>,DC=<COM>?cACert
ificate?base?objectclass=certificationAuthority"

• MMC: Open pkiview.msc Right click on Enterprise CA Manage AD Containers
Go to the NTAuthCertificates tab

If smart card authentication is not in use and the network does not require certificate
authentication to AD, consider removing all the certificates from the NTAuthCertificate object.
This will prevent authentication to AD using certificates. You can delete certificates from the
NTAuth store with certutil.exe by running the following from a domain elevated prompt:

Figure 82 - Deleting Certificates from the NTAuth store with certutil.exe

Alternatively, administrators can run pkiview.msc right click on the “Enterprise PKI” node
select “Manage AD Containers” Select a certificate Click the remove button:

certutil -viewdelstore "ldap:///CN=NtAuthCertificates,CN=Public Key
Services,CN=Services,CN=Configuration,DC=<DOMAIN>,DC=<COM>?cACertifica
te?base?objectclass=certificationAuthority"

110

Figure 83 - Viewing Existing Certs in the NTAuth Store with pkiview.msc

Organizations can also enumerate certificates in NTAuth with the PSPKI162 PowerShell module:

PSPKI can remove certificates from the NTAuthCertificates object using its certificate thumbprint:

Attack IDs:

• Trusting Rogue CA Certificates - DPERSIST2

162 https://github.com/PKISolutions/PSPKI

Install-Module PSPKI -Scope CurrentUser
Import-Module PSPKI

Get-AdPkiContainer -ContainerType NTAuth | Select-Object -Expand
Certificates | Select-Object -Expand Certificate | select *

Get-AdPkiContainer -ContainerType NTAuth | Remove-AdCertificate -
Thumbprint "EC9385E533782453D5C285B2A67311447FB57A6F" -Dispose

https://github.com/PKISolutions/PSPKI

111

Secure Certificate Private Key Storage - PREVENT6

Organizations should ideally protect CA private keys at the hardware level to prevent simple theft
via DPAPI. Microsoft’s “Securing PKI: Protecting CA Keys and Critical Artifacts”163 documentation
details how to migrate from software keys to hardware security modules (HSMs), which we highly
recommend.

Microsoft’s Credential Guard documentation does make claims that it will help secure
certificates164 165, although it is unclear to what extent. We have yet to examine Credential
Guard’s effectiveness in protecting certificates. For example, using the DPAPI backup protocol
may be enough to recover certificates on domain-joined devices (we have not tested it).
Nonetheless, organizations should strive to enable Credential Guard if they can as it provides a
myriad of credential protections beyond just certificates.

On workstations and servers, TPM protection of private keys should also prevent theft via DPAPI
by malicious actors. Consider enabling certificate TPM attestation166 in the environment to make
AD CS only accept certificates with private keys protected by an TPM.

Attack IDs:

• Exporting Certificates Using the Crypto APIs – THEFT1
• Forging Certificates with Stolen CA Certificates - DPERSIST1

Enforce Strict User Mappings - PREVENT7

During certificate authentication, AD maps a certificate to an AD account. Kerberos and SChannel
commonly use a UPN specified in a certificate’s subject alternative name (SAN) to map the
authentication request to an identity in AD. If organizations do not need to use SANs, they can
disable SAN user mapping by setting a couple of sparsely documented registry keys.

At HKLM\SYSTEM\CurrentControlSet\Services\Kdc on a domain controller, setting the
DWORD value of UseSubjectAltName to 0 forces an explicit mapping during Kerberos
authentication. While an attacker can still request (and receive) a certificate with a different SAN,
attempting to use the certificate for Kerberos authentication will result in error “75

163 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786417(v=ws.11)

164 https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-considerations#domain-joined-devices-automatically-provisioned-public-key

165 https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/additional-mitigations#protecting-domain-joined-device-secrets

166 https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/manage/component-updates/tpm-key-attestation

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786417(v=ws.11)

112

KDC_ERR_CLIENT_NAME_MISMATCH”. More details on the mechanics of PKINIT explicit
mapping are at “[MS-PKCA] Section 3.1.5.2.1.3 Explicit Mapping”167. For this approach to be
effective, this registry key needs to be set on every domain controller in the environment.
Microsoft originally published information about this registry value KB4043463 but removed the
KB article at some point in the last few years; PKISolutions has thankfully preserved a copy of the
KB article.168 Now, the only official documentation is a short paragraph describing the setting169.

Kerberos, though, is not the only security package that supports certificate-based authentication.
To fully disable SAN user mapping, organizations also need to disable SAN user mapping for
SChannel as well. This is controlled by the registry value CertificateMappingMethods in the
HKLM\CurrentControlSet\Control\SecurityProviders\SCHANNEL key. Some
documentation very vaguely describes this registry key170. Through reversing engineering
schannel.dll (see the SslLocalMapCredential and SslMapCertToUserPac methods) and
accidentally encountering the leaked Server 2003 source code, we eventually found the possible
bitmask values:

• 0x1 = SP_REG_CERTMAP_SUBJECT_FLAG
• 0x2 = SP_REG_CERTMAP_ISSUER_FLAG
• 0x4 = SP_REG_CERTMAP_UPN_FLAG
• 0x8 = SP_REG_CERTMAP_S4U2SELF_FLAG

From our experimentation, setting this key to either 0x1 or 0x2 successfully blocks the usage of
SANs via SChannel authentication. However, more investigation is likely needed to ensure this is
a sufficient protection.

While setting these keys will not prevent certificate authentication, we have heard of
organizations using these keys to restrict the forms of certificate authentication allowed.

Attack IDs:

• Misconfigured Certificate Templates - ESC1
• Misconfigured Certificate Templates - ESC2
• EDITF_ATTRIBUTESUBJECTALTNAME2 - ESC6

167 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/282ed46a-97c2-4fab-8456-a6bd67b9ba71

168 https://mskb.pkisolutions.com/kb/4043463

169 https://docs.microsoft.com/en-us/windows-server/security/kerberos/whats-new-in-kerberos-authentication#kdc-support-for-key-trust-account-mapping

170 https://docs.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#certificatemappingmethods

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-pkca/282ed46a-97c2-4fab-8456-a6bd67b9ba71
https://mskb.pkisolutions.com/kb/4043463
https://docs.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#certificatemappingmethods

113

Harden AD CS HTTP Endpoints – PREVENT8

Organizations should remove AD CS HTTP endpoints if they are not required. To enumerate which
HTTP endpoints are enabled, IT administrators can look at the installed AD CS server roles on the
CA servers:

Figure 84 - Removing AD CS Server Roles Using the "Remove Roles and Features" Wizard

IIS hosts the AD CS HTTP endpoints. As such, organizations could use IIS access logs as one
technique to determine how often each endpoint is used. By default, these logs are located at
C:\inetpub\logs\LogFiles\ on the AD CS server. Similarly, detection engineers could use
the IIS logs as a telemetry source.

If these endpoints are necessary, enforce HTTPS access to them and restrict NTLM. We present
the following ideas but have not tested their viability in a real production environment:

• Disable NTLM authentication
o At the host level. On AD CS servers, configure GPOs to set Computer Configuration
 Windows Settings Security Settings Local Policies Security Options
“Network security: Restrict NTLM: Incoming NTLM traffic” to “Deny All Accounts”
and add exceptions as necessary using the setting “Network security: Restrict
NTLM: Add server exceptions in this domain.” The other “Restrict NTLM settings”
value can also be enabled to better audit NTLM usage in an environment.

o At the IIS level. Disable authentication providers for each IIS application
associated with an AD CS HTTP endpoint. For example, the following screenshot
shows the removing the default “NTLM” and “Negotiate” Authentication
providers from the “CertSrv” application and replacing them with
“Negotiate:Kerberos”:

114

Figure 85 - Disabling NTLM Authentication Providers for an AD CS IIS Application

• If disabling NTLM is infeasible, enforce HTTPS and enable Extended Protection for
Authentication171:

171 https://msrc-blog.microsoft.com/2009/12/08/extended-protection-for-authentication/

115

Figure 86 - Enabling Extended Protection for Authentication in IIS

In addition, if you find you are vulnerable to this, consider contacting your nearest Microsoft
representative and question them as to why this insecure default configuration is allowed. As of
right now, they have no intentions of directly servicing the issue, but it may fix at some
indeterminate future date.

Attack IDs:

• NTLM Relay to AD CS HTTP Endpoints – ESC8

Detective Guidance

If you cannot stop attackers performing these types of actions, the next defensive-in-depth push
should be detection. Since the same event could be legitimate in one environment but malicious
in another, we cannot give a definitive answer as to which events should cause alarm, but we will
break down every event we know about per malicious action we talked about.

When collecting these events, we enabled very verbose logging to ensure maximum visibility.
This included doing the following:

116

1. Enabling all CA audit logs by opening certsrv.msc right clicking on the CA Auditing.
AD CS unfortunately does not enable any of these logs by default, so it is critical for
network defenders to enable them on each CA to gain visibility. These settings correspond
with the registry key value named AuditFilter172 located at
HKLM\SYSTEM\CurrentControlSet\Services\CertSvc\Configuration\<CA NAME>.
Enabling these logs causes AD CS to write events to the Security event log with a task
category of Certification Services.

Figure 87 - Enabling All Audit Logs on a CA Using certsrv.msc

2. Enabling Success/Failure logging of all the Windows advanced audit logs under the GPO
setting Computer Configuration Windows Settings Security Settings Advanced
Audit Policy Configuration

3. Enabling Success/Failure logging of all the Windows audit logs under the GPO setting
Computer Configuration Windows Settings Local Policies Audit Policy

We recognize that it is unrealistic for most organizations to enable all Windows and AD CS audit
logs. However, we attempt to call out the most relevant events in our detection advice.

Monitor User/Machine Certificate Enrollments - DETECT1

When an account requests a certificate, the CA generates event ID (EID) 4886 “Certificate
Services received a certificate request”173:

172 Securing PKI: Appendix B: Certification Authority Audit Filter, https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786422(v=ws.11)

173 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4886

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4886

117

Figure 88 - Event 4886: Certificate Services Received a Certificate Request

When the CA issues the certificate, it creates EID 4887 “Certificate Services approved a certificate
request and issued a certificate”174:

174 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4887

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4887

118

Figure 89 - Event 4887: Certificate Services Approved a Certificate Request and Issued a Certificate

The event supplies the requester user context, the DNS hostname of the machine they requested
the certificate from, and the time they requested the certificate. The attributes fields in these
event commonly has values for CDC, RMD, and CCM which correspond to Client DC, Request
Machine DNS name, and Cert Client Machine, respectively175.

However, a lot of valuable context that is present in a CSR does not get surfaced. For example,

1. The event log does not expose all certificate attributes or extensions. As such, if an
attacker specifies an alternate user in either of the fields (e.g., in the SAN extension),
attackers could perform user impersonation and privilege escalation via insecure
certificate templates and remain undetected.

2. The certificate template name does not appear.
3. CSRs created by Windows applications and services contain information such as process

names or HTTP user agents.

Although not exposed via the Windows event log, a CA does store the CSR and detailed certificate
information in its database. A CA’s database is a JET/ESE database that lives as a file on the AD

175 https://social.technet.microsoft.com/Forums/en-US/865ab355-4251-4ddc-928f-1d66cefd9dff/custom-request-attributes?forum=winserversecurity

119

CS server. One can query this log and obtain the original CSR and other information, but to our
knowledge, Microsoft has not exposed a programmatic way to get this information in real-time.

One can query the CA database in multiple ways. Running certutil.exe -v -view will output
very detail information about all certificates. Because there are likely thousands of requests in an
enterprise environment, filtering can occur using the -restrict parameter176 177. For example,
the command

will show the Windows user that submitted the CSR (-out requestername) and will display
the parsed CSRs (-v for verbose output, -out rawrequest to show the CSR) for issued
certificates (Disposition=20) submitted after May 21, 2021 at 11:15 AM (local time) where
the requesting user was CORP\itadmin, displaying all times in GMT (-gmt).

The following screenshots highlight data in CSRs that we feel are especially valuable to incident
responders and detection engineers. The screenshots show the output from the above
certutil.exe command, but regardless of the collection method, we feel this data is valuable. First
the output shows the date when the CA received the CSR from the client followed by the base64
CSR:

Figure 90 - Certuil.exe Showing the CSR Submission Date

It then shows the Subject of the certificate and the public key associated with the private key
that signed the CSR:

176 https://docs.microsoft.com/en-us/archive/blogs/pki/disposition-values-for-certutil-view-restrict-and-some-creative-samples

177 https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certutil#-view

certutil.exe -v -view -restrict
"Disposition=20,Request.SubmittedWhen>=5/21/2021 11:15
AM,RequesterName=CORP\itadmin" -gmt -out requestername,rawrequest

120

Figure 91 - Certuil.exe Showing the CSR's Subject and Public Key Fields

The output then displays attributes specified in the CSR. This is valuable contextual information
about the requester, including OS version, user/process information, and the requested
cryptographic service provider (CSP):

Figure 92 - Certutil.exe Showing Client-Supplied CSR Attributes

AD CS does not require the requester to supply all these fields; however, if an application uses
the Windows COM object to submit a CSR, the COM object will auto-populate these fields.
Detection engineers can baseline these fields in their environments and alert on anomalous
values (e.g., abnormal OS versions or processes) or anomalous omissions of these values.

121

The certutil.exe output ends with showing certificate extensions the client supplies in the CSR.
Particularly valuable information includes the certificate template name and the optional subject
alternative name (the CA will only use the SAN if the template has the
CT_FLAG_ENROLLEE_SUPPLIES_SUBJECT flag enabled):

Figure 93 - Certificate Attributes when Querying Issued Certificates with Certutil

As shown, certutil.exe can query the CA database to surface this info, but the output is not in a
nice machine-parseable format. PKISolutions has built a fantastic PowerShell/C# tool called
PSPKI178 that one can use to query the CA’s database. Using PSPKI, we built PSPKIAudit179, a
PowerShell auditing tool for network defenders that exposes much of the above information.
PSPKIAudit’s Get-CertRequest function wraps various PSPKI functionality to return
information (including SAN presence) about certificate requests:

178 https://github.com/PKISolutions/PSPKI

179 http://github.com/GhostPack/PSPKIAudit

https://github.com/PKISolutions/PSPKI

122

Figure 94 - PSPKIAudit's Get-CertRequest Showing an Issued Certificate

If a certificate enrollment is determined to be malicious, administrators can revoke the certificate
through certsrv.msc or PSPKI’s Revoke-Certificate180 function. Keep in mind that Get-
CertRequest has only been tested against PKCS #10 formatted CSRs as they are the most
common. However, AD CS also supports requesting certificates with Cryptographic Message
Syntax (CMS), Certificate Management Messages (CMS), and Netscape KEYGEN Tag Request
Format181.

Attack IDs: PERSIST1, PERSIST2, ESC1, ESC2, ESC3, ESC4, ESC6

• Active User Credential Theft via Certificates – PERSIST1
• Machine Persistence via Certificates - PERSIST2
• Misconfigured Certificate Templates - ESC1
• Misconfigured Certificate Templates - ESC2
• Misconfigured Enrollment Agent Templates - ESC3
• Vulnerable Certificate Template Access Control - ESC4
• EDITF_ATTRIBUTESUBJECTALTNAME2 - ESC6

Monitor Certificate Authentication Events - DETECT2

Recall that both Kerberos (via PKINIT) and SChannel support certificate-based authentication.
Some environments rarely use these authentication protocols (particularly SChannel). As such,
monitoring for logon events using these protocols can detect abnormal activity in the
environment.

For Kerberos, when a user authenticates with a certificate, the DC generates event ID 4768 “A
Kerberos authentication ticket (TGT) was requested”182 in the Security event log. Of note,

180 https://www.pkisolutions.com/tools/pspki/Revoke-Certificate

181 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wcce/e0c8660c-f299-4725-b090-20354b1db9a6

182 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4768

https://www.pkisolutions.com/tools/pspki/Revoke-Certificate
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4768

123

because certificate authentication occurred, the event populates the “Certificate Information”
fields with the authenticating certificate’s Issuer, Serial Number, and Thumbprint:

Figure 95 - Event 4768: A Kerberos Authentication Ticket (TGT) was Requested

Baselining normal PKINIT usage and alerting on abnormal usage is one detection strategy.

One potential detection for forged certificates created from a stolen CA certificate would be to
generate a list of issued certificates and their serial numbers and thumbprints. Then, compare
that list with a list generated from EID 4768 to enumerate which users have legitimately issued
certificates via PSPKI/PSPKIAudit and compare the certificate serial numbers and certificate
thumbprints with the list of certificates that any PKINIT TGT requests are only from this group.

When a client authenticates using SChannel, the DC can generate various events. By default (i.e.,
the CertificateMappingMethods registry key is not set) the DC will attempt to obtain information
about the account specified in the certificate using S4U2Self. During this process it will first create
EID 4769 “A Kerberos service ticket was requested”, requesting a service ticket to itself:

124

Figure 96 - S4U2Self-related Event During SChannel Authentication

The DC will then create EID 4648 “A logon was attempted using explicit credentials”. Of note in
this event, the target account will be the user associated with certificate, the target server is
“localhost” (i.e., it occurs on the DC), and the event includes the IP address of the host where the
logon originated:

125

Figure 97 - EID 4648 that Occurs During S4U2Self

Assuming the S4U2Self process completes successfully, the DC will generate EID 4624 “An
account successfully logged on”, specifying the Authentication Package as Kerberos (due to
S4U2Self) and the Logon Process Name as Schannel. EID 4624 will also include the information
about the user specified in the certificate and the originating IP address:

126

Figure 98 - EID 4624 Showing Successful SChannel Authentication via S4U2Self

If S4U2Self fails or administrators have disable it via the CertificateMappingMethods
registry key, but then authentication otherwise succeeds, then the DC will generate the
following 4624 logon event. Note that the Logon Process is Schannel and the Authentication
Package is Microsoft Unified Security Protocol Provider183

183 https://docs.microsoft.com/en-us/windows/win32/rpc/security-support-providers-ssps-

127

Figure 99 - Logon Event Generate from the Schannel SSP

In summary, monitoring the Logon Process field in logon events (EID 4624) for a value of
Schannel seems to be a reliable way to detect Schannel authentication.

Attack IDs:

• NTLM Credential Theft via PKINIT – THEFT5
• Forging Certificates with Stolen CA Certificates - DPERSIST1
• Trusting Rogue CA Certificates - DPERSIST2
• Misconfigured Certificate Templates - ESC1
• Misconfigured Certificate Templates - ESC2
• Misconfigured Enrollment Agent Templates - ESC3
• Vulnerable Certificate Template Access Control - ESC4
• EDITF_ATTRIBUTESUBJECTALTNAME2 - ESC6

128

Monitor Certificate Authority Backup Events - DETECT3

There are two specific AD CS audit events184 related to the backup of a CA through the certsrv.msc
GUI, specifically EID 4876 “Certificate Services backup started”185 and EID 4877 “Certificate
Services backup completed”186:

Figure 100 - EID 4876 - Certificate Services Backup Started

Figure 101 - EID 4877 Certificate Services Backup Completed

184 https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/audit-certification-services

185 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4876

186 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4877

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/audit-certification-services
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4876
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4877

129

However, these events only fire when a backup the database/database log as well as the private
key and CA certificate. i.e., if a user only selects the following when backing up the CA, AD CS will
not generate any logs:

Figure 102 - Backing Only the CA Private Key via certsrv.msc

However, backing up the private key and CA certificate will result in other audit events. In
particular, the OS generates the following series of events (shown in the screenshots below):

 EID 5058 - Key File Operation. That the subject is the user performing the backup, the
KeyName corresponds with the name of the CA, the KeyType is MachineKey, and the
ClientProcessId is the process performing the export (mmc.exe in this case). The
KeyFilePath and Operation fields correspond with reading the CA’s DPAPI-encrypted
private key file (see the Exporting Certificates Using the Crypto APIs – THEFT1 and User
Certificate Theft via DPAPI – THEFT2 sections for more information about private key
storage and DPAPI).

 EID 5061 - Cryptographic operation. This shares many of the fields as EID 5058, just with
less detail. The important thing to highlight in this event is that a user (the Subject fields)
is opening (the Operation field) the CA’s (specified KeyName field) private key.

 EID 5059 - Key migration operation. The fields in this event are the same as in EID 5058.
The only difference is that the Operation field is “Export of cryptographic key.”

130

Figure 103 - EID 5058 - Key File Operation

Figure 104 - EID 5061 Cryptographic Operation

131

Figure 105 - EID 5059 Key Migration Operation

Attack IDs:

• Forging Certificates with Stolen CA Certificates - DPERSIST1

Monitor Certificate Template Modifications - DETECT4

Certificate templates should rarely change, as such, detection engineers should monitor them
closely and generate alerts if changed unexpectedly. AD CS creates EID 4899 “A Certificate
Services template was updated” when a template AD object’s attributes change, surfacing the
AD object attributes that changed:

132

Figure 106 - EID 4899 "A Certificate Services template was updated"

AD CS generates EID 4900 “Certificate Services template security was updated” when a certificate
template AD object’s security descriptor changes:

Figure 107 - EID 4900 “Certificate Services template security was updated”

133

It is important to note that EID 4899 and 4900 are not suitable for real-time detection of template
modification. These events only fire when the template AD object changes and then an
enrollment occurs. When an account attempts to enroll in a certificate template, the Enterprise
CA compares the loaded template cached in its memory with the template in AD and generates
the appropriate event if they are different. Since this only occurs when the next enrollment
occurs, this is not suitable for real-time detection template modification. In addition, during our
testing, the Enterprise CA did not generate the events if the AD CS server rebooted after the
template changed but before another enrollment occurred.

As an alternative to these events, organizations can apply SACLs to the template AD objects. For
example, the following screenshot shows applying a SACL to the User certificate template AD
object using adsiedit.msc to monitor anytime an account obtains Write, Delete, WriteDacl, and
WriteOwner access to the object:

Figure 108 - Applying a SACL to the User Certificate Template

When a user edits the object via LDAP, AD generates EID 4662 “An operation was performed on
an object”187:

187 https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4662

134

Figure 109 - EID 4662 "An operation was performed on an object"

Note that the event captures the user performing the action and the type of access. The GUIDs
in the ObjectType and Properties event correspond with AD schema property, property set, and
class GUIDs, and various tools can resolve them to a name188 189.

Attack IDs: ESC4, DPERSIST3

• Vulnerable Certificate Template Access Control - ESC4
• Account Persistence via Certificate Renewal - PERSIST3

Detecting Reading of DPAPI-Encrypted Keys - DETECT5

In 2018, Palantir released a great post on using Windows system access control lists (SACLs) to
implement granular auditing, for free, on Windows endpoints190. Organization can apply SACLs
to both DPAPI master key files and the DPAPI-encrypted private key files to audit the processes
and users that normally directly read these files. We assume only SYSTEM processes primarily
access these files, but do not have the data set to yet confirm.

Applying SACLs to DPAPI masterkey and DPAPI-encrypted private key files can detect when a
process uses standard Windows APIs to read the files (the approach SharpDPAPI and Mimikatz
use by default), but it would not catch Mimikatz’s patching of CAPI/CNG or other methods of

188 https://github.com/leechristensen/Random/blob/master/PowerShellScripts/ConvertFrom-DsSchemaGuid.ps1

189 https://github.com/googleprojectzero/sandbox-attacksurface-analysis-tools/blob/deda47e05a981387435894f1143623b0abfbc800/NtObjectManager/DsFunctions.ps1#L86-L359

190 https://medium.com/@cryps1s/detecting-windows-endpoint-compromise-with-sacls-cd748e10950

https://medium.com/@cryps1s/detecting-windows-endpoint-compromise-with-sacls-cd748e10950

135

reading files (e.g., parsing the NTFS file system). Organizations can use this approach to detect
some forms of theft of both user/machine certificate private keys and certificate authority
private keys that are not protected by hardware.

Attack IDs:

• User Certificate Theft via DPAPI – THEFT2
• Machine Certificate Theft via DPAPI – THEFT3
• Active User Credential Theft via Certificates – PERSIST1

Use Honey Credentials – DETECT6

Attackers can search for certificates and private key files that, when used, could benefit the
attacker when compromising a network. Discovered certificates could permit the attacker to
authenticate to AD as another user, forge certificates (in the case of a CA certificate), man-in-the-
middle traffic, or sign code using a trusted certificate (amongst many other things).

Defenders can take advantage of attackers seeking certificate and private key files and potentially
detect some of their activities using honey credentials. Network defenders can create “honey
certificates” and place them in common locations an attacker may search for them, e.g.,
accessible file shares, in Windows credential stores, or in administrative folders on users’
machines. Defenders could place a SACL on the file to detect when someone accesses it or detect
when the certificate is used (e.g., when a file is signed using it or when a user logs on using the
certificate).

For example, detection engineers could create a legitimate account, create a legitimate client
authentication certificate for the account, export the certificate and private key as a .pfx file,
and then place the .pfx file in common locations an attacker may come across it. Detections
could be built to detect when the file is accessed (e.g., using SACLs) or when the attacker attempts
to logon using the certificate (e.g., monitoring EID 4624 logon events for Kerberos PKINIT or
Schannel logons using the certificate).

Attack IDs:

• Finding Certificate Files – THEFT4

136

Miscellaneous – DETECT7

Other events that might be of interest191, but we did not fully dive into:

● 4882: The security permissions for Certificate Services changed192 - in case attackers are
modifying ACLs of the CA itself.

● 4890: The certificate manager settings for Certificate Services changed.193
● 4892: A property of Certificate Services changed.194

SharpDPAPI’s extraction method or host private keys involves having to elevate to SYSTEM to
retrieve the DPAPI_SYSTEM LSA secret, which is then used to decrypt the system masterkeys
needed for the certificate private keys. Any detection/prevention as far as elevating to SYSTEM
and dumping LSA secrets would apply here as well.

Attack IDs:

• Vulnerable Certificate Authority Access Control - ESC7

Incident Response Guidance

In the event of a breach, traditional incident response often results in the wiping/reprovisioning
of a user’s system and the reset of their domain password. However, as certificates are valid for
their issued lifetime and the CA server’s certificate lifetime, they survive user password resets.
This means that legitimately issued certificates for the user/system may have been stolen, and/or
certificates may have been maliciously requested.

The safest mitigation is to reprovision the affected user a new user account, disable the old user
account, audit event logs for attempted authentication events, and wipe the user’s workstation.
If this is not possible, the user’s password should be reset, and all certificates issued to that user
and system should be revoked in AD CS.

Unfortunately, as mentioned previously, it’s relatively difficult to programmatically investigate a
Certificate Authority’s database to determine if certificate issuances may be fraudulent. It’s also
difficult to revoke certificates outside of the certsrv.msc GUI, however the best toolkit we’ve
found is the previously mentioned PSPKI195 PowerShell suite from PKISolutions. It contains

191 https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/audit-certification-services
192 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4882

193 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4890

194 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4892

195 https://github.com/PKISolutions/PSPKI

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/audit-certification-services
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4882
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4890
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4892
https://github.com/PKISolutions/PSPKI

137

several useful functions, including the ability to revoke certificates196. As mentioned previously,
PSPKIAudit can be used to investigate requests for specific templates, or requests from specific
principals. The PSPKIAudit toolset being released with this whitepaper helps enable this type of
investigation with its Get-CertRequest function.

If a Certificate Authority server itself is compromised, or if its private key is in another other way
exposed, an organization should consider their PKI system completely compromised. There are a
number of response actions that should occur, which are detailed by Microsoft’s “Securing PKI:
Compromise Response”197 document. Microsoft has also published the “How to decommission a
Windows enterprise certification authority and remove all related objects”198 which details
technical steps for decommissioning a CA server. Full incident response guidance around AD CS
compromise is out of the scope of this paper.

Defensive Gaps and Challenges

The security considerations of AD CS are new material for most of us. While we attempted to
cover as many bases as we could defensively, we are sure that we missed some preventative or
defensive ideas. Also, additional attacks against AD CS are likely to be discovered by ourselves or
others as a result of this research.

The proper detection of maliciously requested certificates, whether they specify alternate SANs
or not, is a difficult problem. While some event IDs can be used to track certificate requests, the
events lack some important information, and baselining/data processing will be needed in large
environments for these detections to be effective. In the future, we hope that Microsoft gives us
more detailed and security-focused event auditing for Active Directory Certificate Services, things
like including the template and associated information with 4886/4887 events to facilitate event
correlation, and/or including private key backups in the backup event along with more contextual
information for those 4876/4877 events. Alerting organizations to misconfigured template
configuration via event log notification would also be a great addition.

Once a Certificate Authority (or subordinate Certificate Authority) private key is stolen, we do
not currently know of any method of detection for the usage of forged certificates, though we
hope an approach is possible.

196 https://www.pkisolutions.com/tools/pspki/Revoke-Certificate/

197 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786435(v=ws.11)#ca-compromise-response-actions

198 https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/decommission-enterprise-certification-authority-and-remove-objects

https://www.pkisolutions.com/tools/pspki/Revoke-Certificate/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn786435(v=ws.11)#ca-compromise-response-actions
https://docs.microsoft.com/en-us/troubleshoot/windows-server/windows-security/decommission-enterprise-certification-authority-and-remove-objects

138

Conclusion
Active Directory Certificate Services is not the easiest system to fully understand, implement, nor
secure. There are a myriad of moving parts and several settings that, while appearing somewhat
inconsequential, can drastically affect the security of the entire Active Directory environment. In
summary, from an offensive perspective, certificate abuse can grant an attacker:

User Credential Theft (1 year+)

Stealing existing user certificates capable of domain
authentication or actively requesting a new certificate
from a user’s context. Survives user password changes
and can be done without elevation or touching LSASS!

Machine Persistence (1 year+)

Stealing existing system certificates capable of domain
authentication or actively requesting a new certificate
from a system’s context, combined with resource-based
constrained delegation or just S4U2Self. Survives
machine password changes and can be done without
touching LSASS!

Domain Escalation Path(s)

Misconfigured certificate templates that allow Subject
Alternative Name (SAN) specification, vulnerable
Certificate Request Agent templates, vulnerable
template ACLs, the EDITF_ATTRIBUTESUBJECTALTNAME2
flag being set, vulnerable CA permissions, or NTLM relay
to web enrollment endpoints.

Domain Persistence
Stealing the certificate authority’s private key and forging
certificates.

It is extremely easy for certificate misconfigurations to arise that allow unprivileged domain users
to escalate their rights. We have seen a proliferation of these issues in real environments since
we began looking in February 2021.

We reported the “NTLM Relay to AD CS HTTP Endpoints – ESC8” issue to MSRC on May 19th along
with all domain escalation scenarios and received a response on June 8th of “We determined
your finding is valid but does not meet our bar for a security update release.” They recommended

139

enabling Extended Protection for Authentication199, and stated that they also opened up a bug
concerning the template issues and our comments about poor telemetry with the AD CS feature
team, who may consider additional design changes in a future release.

From a defensive perspective, we strongly recommend organizations audit their AD CS
architecture and certificate templates and treat CA servers as Tier 0 assets with the same
protections as Domain Controllers! It is also not enough to just reset a compromised user's
password and/or reimage their machine. Passive (and active) certificate theft for domain users
and computers is trivial given code execution in a user's/computer's context; therefore, any
certificates issued for the user/computer must be revoked and well. The Defensive Guidance
section has more information on how to proactively prevent, detect, and respond to the abuses
detailed in this paper.

The tools the authors developed for this research, Certify (for certification template enumeration
and request abuse), and ForgeCert (for certificate forgery from CA certs) will be released
approximately 45 days from the publication date of this paper. The PowerShell toolset to
enumerate vulnerable templates (PSPKIAudit200) is now available.

199 https://msrc-blog.microsoft.com/2009/12/08/extended-protection-for-authentication/

200 https://github.com/GhostPack/PSPKIAudit

https://github.com/GhostPack/PSPKIAudit

140

Acknowledgements
All existing work we drew knowledge and inspiration from is listed in the “Prior Work” section.

Special thanks to Mark Gamache for co-uncovering many of these abuses and bringing additional
details to our attention.

Special thanks to Benjamin Delpy for his existing work in this area and inspiration for us to pursue
this research.

Special thanks to Ceri Coburn for their contribution to Rubeus that allows for certificate-based
authentication without a physical smart card. This greatly facilitated our offensive research.

Thank you to Andrew Chiles, Jason Frank, Elad Shamir, and others from SpecterOps for content
review.

	Revision Summary
	Abstract
	Introduction
	Prior Work
	Background
	Certificate Templates
	Certificate Enrollment
	Enrollment Rights and Protocols
	Issuance Requirements
	Manager Approval
	Enrollment Agents, Authorized Signatures, and Application Policies

	Subject Alternative Names and Authentication
	Kerberos Authentication and the NTAuthCertificates Container
	Secure Channel (Schannel) Authentication

	AD CS Enumeration

	AD CS Tradecraft
	Certificate Theft
	Exporting Certificates Using the Crypto APIs – THEFT1
	User Certificate Theft via DPAPI – THEFT2
	Machine Certificate Theft via DPAPI – THEFT3
	Finding Certificate Files – THEFT4
	NTLM Credential Theft via PKINIT – THEFT5

	Account Persistence
	Active User Credential Theft via Certificates – PERSIST1
	Machine Persistence via Certificates - PERSIST2
	Account Persistence via Certificate Renewal - PERSIST3

	Domain Escalation
	Misconfigured Certificate Templates - ESC1
	Misconfigured Certificate Templates - ESC2
	Misconfigured Enrollment Agent Templates - ESC3
	Vulnerable Certificate Template Access Control - ESC4
	Vulnerable PKI Object Access Control - ESC5
	EDITF_ATTRIBUTESUBJECTALTNAME2 - ESC6
	Vulnerable Certificate Authority Access Control - ESC7
	NTLM Relay to AD CS HTTP Endpoints – ESC8

	Domain Persistence
	Forging Certificates with Stolen CA Certificates - DPERSIST1
	Trusting Rogue CA Certificates - DPERSIST2
	Malicious Misconfiguration - DPERSIST3

	PKI Architecture Flaws
	Lack of Offline Root CA and Tiered Architecture
	Unprotected Subordinate CAs
	Breaking Forest Trusts via AD CS
	CAs Trusts Breaking Forest Trusts
	Foreign Principals With Enrollment Privileges

	Defensive Guidance
	Preventive Guidance
	Treat CAs as Tier 0 Assets - PREVENT1
	Harden CA Settings - PREVENT2
	Disable EDITF_ATTRIBUTESUBJECTALTNAME2
	Constrain Enrollment Agents
	Restrict CA Server Permissions

	Audit Published Templates - PREVENT3
	Harden Certificate Template Settings - PREVENT4
	Audit NTAuthCertificates - PREVENT5
	Secure Certificate Private Key Storage - PREVENT6
	Enforce Strict User Mappings - PREVENT7
	Harden AD CS HTTP Endpoints – PREVENT8

	Detective Guidance
	Monitor User/Machine Certificate Enrollments - DETECT1
	Monitor Certificate Authentication Events - DETECT2
	Monitor Certificate Authority Backup Events - DETECT3
	Monitor Certificate Template Modifications - DETECT4
	Detecting Reading of DPAPI-Encrypted Keys - DETECT5
	Use Honey Credentials – DETECT6
	Miscellaneous – DETECT7

	Incident Response Guidance
	Defensive Gaps and Challenges

	Conclusion
	Acknowledgements

